
HyperContent v1.4 manual

An exhaustive reference manual for HyperContent Version 1.4, including
chapters dedicated to installation, customization, use and technology references.

by

Alex Vigdor

published by

Columbia University Administrative Information Services

last updated Sep 15, 2005 5:09:39 PM EDT

© 2004 Columbia University in the City of New York

HyperContent 1.4
HyperContent is a robust content management framework fronted by an extensible set of
uPortal channels and backed up by a full-featured repository and multithreaded
publishing engine. HyperContent is a complete solution for the rapid development of
completely custom, well structured web sites, requiring knowledge of XML, DTDs and
XSL - no Java programming required.

Following the release of HyperContent v1.0, which implemented this new framework for
managing web sites from within a uPortal channel, and v1.1, which extended the
framework with more robust editing capabilities, metadata support and enhanced
performance, v1.2 featured a major overhaul of the user interface with many powerful
new features, including

• a WYSIWYG editor for free-form text
• Full content and metadata searching
• New contextual functions for creating, copying and moving documents and folders
• VCARD contact information editing, with configurable LDAP feed

Site developers found new features geared towards simplifying their work:

• maintain DTDs and XSL imports right in the repository
• upload and preview XSL in two clicks
• publication metrics identify possible site implementation bottlenecks
• new editor framework simplifies the development of custom editing UIs

HyperContent version 1.3 added multi-lingual spell checking ability (with built-in
dictionaries for American and British English, French and German), in-browser photo
cropping and resizing, image thumbnails, SFTP publishing support, and more. Version
1.4 adds a new site navigation management system.

HyperContent is widely used at Columbia University to manage departmental web sites;
this release has been tested, tweaked and proven in a heavily used, multi-project
environment. Don't hesitate to take it for a test drive to meet your own web site
management needs!

i

Table of Contents

Overview 1

Features 2
Architecture 4
Process 5
Release Notes 8
License 14

Getting Started 15

System Requirements 17
Installation 18

Using the Content Manager 19

Top Navigation 22
Search 23
Directory tree navigation 25
Details screen 26
Create a new file 28
Copying & Moving files 30
Admin section 31
Output section 33
References 34
Revisions section 35
Report screen 36
Permissions 39

Authoring Content 40

Dublin Core Metadata 42
WYSIWYG & XML 43
Upload & Download 44
Plain Text 45
VCard (Contact Info) 46
Spell Check 48
Images 50
Build Options 52
Navigation / Site Map 53

Developing Sites 54

ii

Project Definition Files 55
Filesystems 56
Path patterns 58
Content Types 61
XML Content 62
RDF: Extensible Metadata 67
Dublin Core Metadata 72
VCard Metadata 77
XML Includes 83
XSL Transformations 86
Filters 88
Non-XML Content 90
Editors 92
Ignored Directories 94
Permissions 95
Navigation and Site Maps 96
Optimizations 100

Glossary 101

Bibliography 103

iii

Overview
The documentation for HyperContent is divided into five main sections; this first section,
the Overview, is intended to provide an introduction to HyperContent, including its
features, architecture, licensing, and the process of developing a web site. This is
high-level information that may provide useful to individuals, educational institutions or
companies interested in understanding or evaluating the capabilities of HyperContent, as
well as users of previous versions interested in seeing what this new release has to offer.
Each section of the documentation is comprised of chapters on specific topics; the other
four sections are

Getting Started

This section describes the process of downloading and installing HyperContent.
It is intended for a technical audience.

Using the Content Manager

This is documentation for project administrators and content authors describing
the administrative functionality of HyperContent.

Authoring Content

This is documentation specifically for content authors, describing the data-entry
screens in HyperContent. These screens are accessed from the Content
Manager described in the prvious section.

Developing Sites

This section is an complete development and configuration guide for creating
complete custom web sites. It is intended for a technical audience.

HyperContent v1.4 manual Overview 1

© 2004 Columbia University in the City of New York

Features

HyperContent is thorough solution for web content management. The bundled
administrative and authoring applications run as channels in a uPortal environment, and
are accessible from standard web browsers.

Authoring

HyperContent features a configureable content authoring environment, with built in
support for

• WYSIWYG markup (in IE or Mozilla)
• DTD driven XML
• Spell checking (American or British English, French or German)
• Image cropping and resizing
• Dublin Core metadata
• Upload/Download from the Desktop
• VCard (contact info)
• Plain text
• Custom JAVA editors, which can be developed using the provided IEditor

framework or standard uPortal IServant implementations

Storage

HyperContent is built on a robust, reusable Filesystem package that includes

• basic file and directory I/O
• user-specific temp files
• saving old file editions
• file and directory locking
• RDF metadata for every file edition and directory
• standard "flat" filesystem support
• FTP and SFTP access for remote filesystems
• read-only access to ZIP files
• search indexing
• API to allow extensibility to other back ends, such as RDBMS or WebDAV

Management

A full set of management functionality is provided by the Content Manager channel:

• repository search
• build, publish and preview
• create, edit, copy, move, compact or delete files

HyperContent v1.4 manual Overview: Features 2

© 2004 Columbia University in the City of New York

• upload or download zip of any file or directory
• manage authorizations
• view relationships between files
• edit or revert to old file editions

Customization

HyperContent provides a multitude of ways to create competely customized web sites
and project-tailored authoring environments:

• Project definition grammar to define custom, well-structured sites
• DTD driven authoring for custom XML grammar support
• XSL allows separation of presentation from content
• XML includes allow re-use of data across the site and in different formats
• configureable data and metadata authoring environments
• associate new or known MIME content types with specific editing tools
• JAVA filter framework to create new forms of output
• IEditor framework for project-specific authoring environments
• Filesystem framework allows for custom back-ends

Internationalization

The standard components of HyperContent are completely localizable and UTF-8
transparent, providing full support for use with many different languages. In addition, the
IEditor framework has built-in tools to simplify the development of localizable authoring
environments.

HyperContent v1.4 manual 3

© 2004 Columbia University in the City of New York

Architecture

HyperContent v1.4 manual Overview: Architecture 4

© 2004 Columbia University in the City of New York

Process

This chapter is intended to provide a brief, prosaic description of the process of
developing a web site with HyperContent.

Information Architecture

The first and most critical stage of developing a web site is determining the information
architecture. Things that must be established include what information will be conveyed,
what kinds of pages are necessary to present that information, how pages relating to
different kinds of information will be grouped, how broad and deep these groupings
should be, and how navigation will be performed among the different groupings and page
types. These decisions need to be made with a goal of clarity and comprehensibility to the
intended audience.

There are many resources to help develop a coherent strategy for information
architecture, including an O'Reilly book and a webmonkey tutorial.

Graphical User Interface Design

GUI Design generally starts with pen, paper, and the intention to express an information
architecture, from its structure and navigation to the display of specific types of
information. The process is iterative, with each set of sketches being a refinement of the
last, based on review, feedback and fresh ideas. The end result of the GUI Design process
is generally a set of paper, graphical or HTML mockups that exemplify the overall site
branding and the presentation of every type of page and navigational component
specified by the information architecture. This design ultimately will be distilled down to
CSS, image files and HTML gestures. The CSS and image files can be imported directly
into HyperContent for site implementation; the HTML gestures will be coded into XSL
templates designed to present the structured data stored in the site repository.

Site Implementation

Site implementation requires an information architecture, but may begin without a
finished GUI design; as the goal of site implementation is to maintain a separation
between content and presentation, much of the work can be done before the presentation
is fully developed.

An information architecture is expressed at two levels in HyperContent; at the lowest

HyperContent v1.4 manual Overview: Process 5

© 2004 Columbia University in the City of New York

http://www.oreilly.com/catalog/infotecture/
http://hotwired.lycos.com/webmonkey/design/site_building/tutorials/tutorial1.html

level, XML DTDs are used to express the structure of data fields. At a higher level a
Project Definition document describes file and directory structures, the association of
particular XML root elements with specific XML file types, the includes, XSL and filters
associated with XML files, support for non-XML content types, and any customizations
of the content authoring environment. Project Definitions also describe where the data
repository will be, as well as where the site output should go. Project Definitions are
described in depth in the Developing Sites section of the HyperContent documentation.

When the site implementation is complete, the end result will be a Project Definition file,
a set of XML DTDs and XSL, and any number of image, CSS and other support files
which are used to construct the GUI. All of these files can be managed using the Content
Manager channel, which is the administrative and authoring tool provided by
HyperContent.

Content Development

Once a site is implemented, the Content Manager channel gives content authors
everything they need to create, update and manage content in the site. This includes the
ability to browse, search, create, copy, move, edit, delete, preview, build and publish files
and folders in the repository. All of these activities are subject to authorization, so that
administrative users can specify exactly who has what privileges.

During authoring, there is a repetitive cycle of making changes and previewing the result.
It is possible to give content authors permission to build content, which runs their
changes through the publishing engine and onto the staging server, but not publish it,
allowing review by an editor before the content is made publicly available.

The Content Manager channel is described in depth later in this manual, as are the
specific authoring tools that ship with HyperContent. HyperContent also provides a
complete framework for plugging in custom editors.

Adding on

As time goes on, many web sites need to add additional types of information in order to
meet new needs or cater to increasingly sophisticated users. At any time, the project
DTDs can be modified to add additional fields or attributes that can be used in existing as
well as new XML content. You can easily extend either the breadth or depth of the site
with new page types that will live alongside or beneath current data, and it is possible to
implement a new look and feel, navigational scheme, or audience-specific output either in
place of or alongside the existing site, by modifying or writing new XSL templates.

HyperContent v1.4 manual 6

© 2004 Columbia University in the City of New York

HyperContent v1.4 manual 7

© 2004 Columbia University in the City of New York

Release Notes

v1.4 (6/18/2004)

NEW FEATURES:

• Site Navigation management system including XML templating language,
navigation generation filter and navigation editor with drag-and-drop reordering.

• Supports uPortal 2.3
• Allow metadata RDF/XML loading from XSLT document() function with special

'.rdf' extension on regular file path
• Support for setting group for files pushed to SFTP filesystems
• Support for build-time filters which are run as pre-processing, enabling filtered data

to be included by other files.

BUG FIXES:

• dependencies in specific configurations may have been missed causing content to
become stale

• WYSIWYG may have not displayed properly under Internet Explorer at times
• if current edition of a file is deleted, most recent remaining edition now becomes

current
• update HyperContent DTD url in project definitions
• files downloaded from file details screen are now properly downloaded with

filename

v1.3 (3/15/2004)

NEW FEATURES:

• Spell-checker with built in dictionaries for American and British English, French
and German and support for custom project dictionaries

• Image Editor allows in-browser cropping and resizing of photos and images, with
automatic conversion between JPG, GIF and PNG formats

• Thumbnails automatically generated and displayed for images and files with
VCARD photos

• SFTP support for secure publishing
• support uPortal 2.2 dynamic locale selection

BUG FIXES:

• Dates of files in an FTP filesystem may have been inaccurate
• XML editor could fail to update content with Xerces 2.2.1
• jta.jar bundled to workaround uPortal 2.2 installation bug

HyperContent v1.4 manual Overview: Release Notes 8

© 2004 Columbia University in the City of New York

CHANGES:

• Lots of refactoring and package changes
• increase buffer size and reduce memory use by reusing buffers
• now configured for uPortal 2.2 quick-start installation
• update sample project to demonstrate new features
• update FTP library to 1.2.3
• update WYSIWYG from latest HTMLArea code
• XML includes optimized for speed and memory efficiency by reducing in-memory

data copying, and caching and filtering SAX events
• no longer delete output file if build or publish fails
• tweak XML editor GUI for better skin compatibility
• store temp files asynchronously
• enhance performance with custom UTF-8 reader, writer and properties loader
• renamed project from CuCMS to HyperContent!

v1.2 (12/2003)

NEW FEATURES:

• WYSIWYG markup editing with automatic HTML cleanup
• Full content and metadata searching
• VCARD metadata editor with LDAP integration and photo support
• Copy and move files and directories
• Contextual document creation
• Download or upload ZIP of any directory or file in the repository
• Compact command deletes all historical file editions, leaving only current content
• Prune command deletes empty directories from the repository
• Preview, Build or Publish from any node in the repository filesystem
• Force Build and Force Publish refreshes all content
• All requests can now be gracefully stopped
• Performance metrics for Building helps identify site implementation bottlenecks
• DTDs and XSL imports can now be stored right in the repository
• Preview XSL without saving
• Locate repository files by URL of output
• View file dependencies and references
• Ant build file simplifies installation
• Full localization capabilities for presenting GUI in other languages
• Support for non-editioning or prompt-required repositories
• Support for directory metadata, including label
• Configure "ignored" directories to allow nested filesystems
• Caching and performance enhancements
• Custom editor framework simplifies development of authoring environments
• Filter framework allows completely custom data manipulations

BUG FIXES:

HyperContent v1.4 manual 9

© 2004 Columbia University in the City of New York

• improve stream handling (close streams in finally statement)
• improve FTP filesystem compatibility with solaris
• fix bugs in filesystem copy and move functions that lost some metadata
• double-check permissions before performing commands, eliminate possible exploits
• enable use of Content Manager channel while request is running in background

window
• improved filesystem change handling on screen refresh
• fix bug in XML editor where inserts may have occurred in the wrong places
• fix XML editor bug where parsed entities acquired from a system identity would be

lost
• reject file or directory names with odd characters
• Content Manager GUI now enables browsers to properly display hand/link pointer

over build, publish and preview links

CHANGES:

• new MIT-based license
• Filesystem API: added methods to store search index, copy directory
• upgrade to Jena 2.0
• refactored all editors to use new IEditor and localization frameworks
• permissions policy supports wildcards for new, copy and move functions
• changed ContentTypes.xml format to support new editor framework
• new request threading code improves multiple simultaneous user experience
• use of threadlocal variables in some classes to increase performance
• CMSException can use formatted messages for improved readability and

localizability
• improved reporting of errors and warnings during build
• improved pattern recognition allows shallower, more readable directory paths and

more strongly enforced structures
• defer filesystem access to support runtime re-configuration
• new icons: forward/back in edit mode, preview, edit and delete, content types,

details
• one-click save or discard
• overhaul of file creation GUI; now contextual and more intuitive
• add new GUI sections for create, admin, copy/move, references, output, revisions
• directory GUI widgets are now anchored for improved navigation
• show dublin core title in details screen
• root directory is now visible and selectable in filesystem tree
• temp files now kept in memory during editing to speed up editor-switching
• XML Editor: supports ID attributes, HTML parsing, new process icon,

expand/collapse and lock/unlock elements
• much refactoring in publication engine
• removed converting filesystem impl; 1.0 installations must upgrade to 1.1 before 1.2

v1.1 (04/22/2003)

NEW FEATURES:

HyperContent v1.4 manual 10

© 2004 Columbia University in the City of New York

METADATA SUPPORT:

• New filesystem package is integrated with HP's Jena for file-level RDF
metadata support

• New Dublin Core metadata editor works with any file type
• All metadata, including Dublin Core, is accessible for page rendering via

XML Includes
• Multiple Editor support allows editing of disparate sets of metadata for the

same file

NEW FILESYSTEM API AND IMPLEMENTATION:

• Filesystem-level RDF metadata support
• enhanced for performance
• no uPortal or HyperContent dependencies, so filesystem package can be

re-used separately

OASIS XML CATALOG SUPPORT:

• Used to specify rewrite rules for locating DTDs or XML files
• Can be used to support local/offline hosting of documents normally

retrieved from a URL
• Complete integration: any DTD, include file, stylesheet or URL

referenced from an XSLT document() call can be redirected using the
catalog

MULTIPLE EDITOR SUPPORT:

• Specify any number of different data and metadata editors per file
• Editors can be specified at global, project and file levels
• If a single editor fails to initialize, others are still available

ENHANCED BUILD FLEXIBILITY:

• Specify includes on a per-file basis
• Specify multiple forms of output for a page in the same markup
• Replace one file's contents with another at build time
• Retrieve includes, replacements and stylesheets from URLs

HyperContent is now fully UTF-8 transparent for working with worldwide
scripts

BUG FIXES:

• File upload properly recognizes equivalent content types

HyperContent v1.4 manual 11

© 2004 Columbia University in the City of New York

• Files with custom specified editor factories whose content type had no universally
specified factory would appear uneditable in Content Manager channel

• DTD parser for XML editor fixed to maintain attribute order and properly handle
certain configurations of nested element lists

CHANGES:

• with-baseurl XSL parameter now provides a relative rather than absolute path
• with-property XSL parameter removed: RDF metadata is now available via XML

includes
• with-filecomment XSL parameter removed: RDF metadata is now available via

XML includes
• with-filename XSL parameter removed: XSL is now guaranteed the presence of

cms:source and cms:include tags containing this information, as well as path and
content type.

• XML Include elements XmlIncludeWrapper, XmlSource and IncludedFile have
been renamed respectively to wrapper, source and include under the namespace
"http://www.ais.columbia.edu/sws/xmlns/cucms#"

• The new editioning Filesystem implementation will not work with 1.0 repositories.
For backwards compatibility, change the "local-editioning" filesystem definition in
/properties/FileSystemConfig.xml to point to the class
"edu.columbia.ais.portal.cms.filesystem.ConvertingFileSystemImpl". Each
filesystem will be converted on the first attempt to access it. This might take some
time. Once all filesystems are converted and verified, you can safely change the
implementation back to
"edu.columbia.ais.filesystem.impl.LocalEditioningFileSystemImpl"

v1.0.1 (01/03/2003)

BUG FIX:

• "Deny" type permissions were not enforced

v1.0 (12/18/2002)

Initial release of HyperContent.

Features:

• Store, edit and publish files of any type
• Maintain history of file changes
• Recognize relationships between files
• Enforce access controls to projects and files
• Use uPortal as the platform for management functions
• XML based content storage for adaptability, reuse, speed of development
• XSL Transformations to allow multiple output forms of XML content

HyperContent v1.4 manual 12

© 2004 Columbia University in the City of New York

• XML Includes to minimize data redundancy
• Extensible, customizable framework for file editors
• Publish files to remote servers via FTP

HyperContent v1.4 manual 13

© 2004 Columbia University in the City of New York

License

Copyright © 2003 Columbia University in the City of New York.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

HyperContent v1.4 manual Overview: License 14

© 2004 Columbia University in the City of New York

Getting Started
HyperContent requires JDK 1.4+ and uPortal 2.1+ to run; even if you do not already have
a uPortal installation, you can quickly get up and running with both uPortal and
HyperContent by downloading the uPortal 2.3.2 quick start and the HyperContent v1.4
distribution. The HyperContent distribution is pre-configured for installation into the
uPortal 2.3.2 quick-start: once both packages are downloaded and unzipped, just drag the
HyperContent distribution folder into the uPortal quick-start folder. First, open a
command prompt, and run:

./ant.sh hsql
or on windows:

ant hsql

Next, in a different command window, execute the following command:

./ant.sh -buildfile HyperContent1_4/build.xml

or on windows

ant -buildfile HyperContent1_4\build.xml

This runs the default HyperContent install target, which will deploy media, properties,
libraries, repositories and publish the Content Manager channel.

If this completes without any errors, you can start up the portal application server. Before
doing this the first time, it is recommended that you increase tomcat's memory allocation,
as the default of 64 MB is insufficient for advanced use of HyperContent (such as spell
checking and building large sites). You can do this by adding this tag in the uPortal ant
script 'build.xml', in the 'tomcatstart' target after the classpath element:

< jvmarg value="-Xmx256M"/>

You start the application server with the command

./ant.sh tomcatstart

or on windows

ant tomcatstart

HyperContent v1.4 manual Getting Started 15

© 2004 Columbia University in the City of New York

http://mis105.mis.udel.edu/ja-sig/uportal/download.html
hypercontent:/hc-legacy/downloads/index.html
hypercontent:/hc-legacy/downloads/index.html

Access the portal by going to http://localhost:8080/uPortal in a browser window. Log
in with the username admin and password admin, and go to the Preferences section to
subscribe to the Content Manager channel. At this point, you are ready to proceed to the
next section of the manual.

If you would like to install HyperContent into an existing installation of uPortal, or want
information on other available ant targets, read the Installation chapter for details on how
to configure the ant scripts for deployment. If you are upgrading from HyperContent 1.2
or 1.3, it is recommended that you run the "undeploy" ant target from the previous
version before upgrading, to eliminate the possibility of library conflicts.

HyperContent v1.4 manual 16

© 2004 Columbia University in the City of New York

System Requirements

HyperContent is a server-side java application, and is accessed via a browser. The GUI
runs as a channel inside uPortal. Therefore, the software requirements on the server side
are

• Java version 1.4+
• Web application server (e.g. tomcat)
• Web server (e.g. apache, or tomcat standalone)
• uPortal 2.1.x, 2.2.x or 2.3.x

On the client side, basic functionality is available to any javascript-enabled browser, but
WYSIWYG editing requires either

• Internet Explorer 5.5+ (on the PC - 6 recommended)
• Mozilla 1.3+ (Mac, PC, Linux, etc. - 1.5 recommended)

Server hardware
It is highly recommended that you have at least 192 MB of physical memory free and
allocated to the JVM running uPortal and HyperContent. HyperContent build
performance is constrained equally by disk and CPU speed; while there are no minimum
requirements for CPU or disk speed, optimum performance will be achieved with a
1+Ghz processor and a 7200+ rpm drive.

HyperContent v1.4 manual Getting Started: System Requirements 17

© 2004 Columbia University in the City of New York

Installation

Installation of HyperContent is automated through the use of an Ant script. The file
build.properties in the hypercontent distribution directory has three configureable
properties which you can use to control where the files are installed:

• deploy This property should point to the filesystem path of the deployed uPortal web
application; this will be used to determine where media and libraries should be
installed, as well as allowing HyperContent to reference uPortal libraries for
compilation.

• common.lib This property should point to the common/lib directory of tomcat, or a
similar directory that stores libraries available to the uPortal process but not stored
under the uPortal web application.

• runtime.dir This property is misleadingly named on purpose; it is used to specify
where the cucms-repositories directory will be installed. It is easiest to set this to the
path of the directory which is the context of the application server; this allows
HyperContent to use relative paths to reference repositories. If you set this to
another directory, you will also need to change the filesystem declarations in the
Projects.xml property file, and in the sample project configuration, to point to the
appropriate path. The sample project configuration file can be edited with
HyperContent running, by opening the HyperContent Project Definitions project and
editing the hypercontent-site.xml document under the projects directory.

The file build.xml contains the following ant targets:

• install (default) - calls deploy, publish, copyzips and creates cucms build directories
under the uPortal web application

• publish publishes the Content Manager channel into uPortal - requires database
access.

• deploy This target deploys HyperContent media, properties, and libraries into the
uPortal web application

• copyzips copies the bootstrap and sample-project data from zip files into directories
under ${runtime.dir}/cucms-repositories/

• uninstall calls unpublish and undeploy, and deletes cucms repositories and build
directories (warning: this will delete any changes you have made to data in these
directories!)

• unpublish This target unpublishes the Content Manager channel from uPortal
(requires database access)

• undeploy This target removes HyperContent media, properties, and libraries from
the uPortal web application

• compile This target compiles the source files under the source directory, into the
classes directory.

• jar This target compiles the sources, copies in stylesheets, and creates a fresh
HyperContent jar file

HyperContent v1.4 manual Getting Started: Installation 18

© 2004 Columbia University in the City of New York

Using the Content Manager
The Content Manager is the primary human interface for HyperContent; it is the entry
point for administrators, content authors and developers alike. Content Manager is a
uPortal channel; it must be installed, published and subscribed to by a user before it will
be visible. Please see the "Getting Started" section for more information about this
process.

HyperContent organizes information according to project ; each project represents a
unique configuration of content types, structure, underlying filesystems, and authoring
environments. Each project might represent a particular web site, or a repository of data
of interest to a particular population. There is a special project called "CMS Project
Definitions" which is used to store the XML configuration files for every other project in
the system; via this bootstrap project new projects can be added, or existing projects
altered or extended.

When the Content Manager first appears on screen, it will show you a list of projects to
which you have access. If you are an authenticated portal administrator, you will see a list
of all projects in the system.

HyperContent v1.4 manual Using the Content Manager 19

© 2004 Columbia University in the City of New York

Click on the title of any project to open it. Once it is open, you will be taken to the
project's browse screen. This is divided into three main areas: across the top, beneath the
project title, is the top navigation; on the left is the directory tree showing the repository
filesystem; on the right is the details screen which allows you to perform any of the
available administrative functions, or enter authoring mode. Subsequent chapters describe
these different sections of the interface.

HyperContent v1.4 manual 20

© 2004 Columbia University in the City of New York

HyperContent v1.4 manual 21

© 2004 Columbia University in the City of New York

Top Navigation

Once you have opened a project, across the top of the Content Manager and beneath the
project title, is a set of links that give you access to the most important project-wide
screens and commands

By default, you are taken to the Browse screen; the other available screens are Search
and Admin. The Search and Browse screens are discussed in subsequent chapters; the
Admin screen gives you access to perform project-wide administrative functions,
including rebuilding or optimizing the search index, and setting project permissions.

Four actions are also linked from top navigation;

• Build All: This link launched a request to build the entire site in a new window. See
the Report Screen section, which explains the screen which comes up.

• View Built: This link takes you to the latest build of the site
• Publish All: This link publishes the current build.
• View Published: This link takes you to the currently published site

HyperContent v1.4 manual Using the Content Manager: Top Navigation 22

© 2004 Columbia University in the City of New York

Search

The search screen gives you simple, fast and powerful ways to locate files in the
repository, without having to remember their location or browse to them. You can search
either by query or by pasting in a URL from the publish, preview or build site to locate
the corresponding file in the repository.

When searching by query you can refine the scope of your search by using the provided
drop-down list; by default, the scope is set to Anything, which searches the complete
contents and metadata of every file in the repository, and will also successfully match the
first few letters of a file or directory name.

The more specific search scopes are

• Content - searches the data of files, but not the metadata or path
• Keywords - search the Keywords metadata field
• Description - search the Description metadata field
• Title - search the Title metadata field
• Author - search the Author metadata field
• File name - search by complete or partial file name

Search Results

The results by default are sorted by relevance, but you can also display them by type if,
for example, you are specifically looking for images or XSL files.

Each result is presented, on the first line, with an icon representing its content type, it's
title or file name, and up to three icons:

HyperContent v1.4 manual Using the Content Manager: Search 23

© 2004 Columbia University in the City of New York

• Open the default editor for this file

• Preview this file

• Go to the Details screen for this file

Subsequent lines show the file description, if any, and the file's path in the repository.

Query Syntax

The syntax for search queries in HyperContent is similar to what users might be used to
from search engines such as google. If several words are entered in the search box, any
results that match one or more of the words are returned, with documents matching more
of the terms receiving a higher ranking. To search for a phrase, enclose it in quote marks
("). To assure that a particular word is matched in the search, prefix the word with a "+"
sign. To reject any documents matching a particular word, prefix that word with a "-"
sign.

HyperContent v1.4 manual 24

© 2004 Columbia University in the City of New York

http://127.0.0.1:8080/docs/manual/manage/details.html

Directory tree navigation

The directory tree component of the Content Manager browse screen presents you with a
familiar interface to files in the repository. Much like Windows Exporer or the Macintosh
Finder, the directory tree presents a hierarchical view of directories that can be expanded
and collapsed, and the files which the directories contain.

Clicking on a right-facing arrow next to a directory will expand it to reveal its contents;
clicking on a down-facing arrow will collapse that directory and hide its contents. Click
on the name of a directory or file to pull up its Details screen, described in the next
chapter.

HyperContent v1.4 manual Using the Content Manager: Directory tree navigation 25

© 2004 Columbia University in the City of New York

Details screen

The Content Manager Details screen is reached by clicking on the name of a file or
directory in the directory tree, or by clicking in a search results or references list. It

appears as a highlighted box to the right of the directory tree, and it refers to details of the
highlighted directory or file in the tree.

The highlighted section at top displays the file's title or name, and up to four icons:

• go to the details screen for the parent directory (mouseover to show parent path)

• edit this file; opens the current revision in the default editor

• preview this file; opens a new window

• delete this file or directory

HyperContent v1.4 manual Using the Content Manager: Details screen 26

© 2004 Columbia University in the City of New York

Directly beneath this highlighted section, you will see up to three links that perform
actions on the selected file or directory:

• Build (opens report screen in new window)
• Publish (opens report screen in new window)
• Permissions (assign access rights to the file or directory)

Beneath these links, you might see a file's description, and you may also see a listing for
a draft file if you had previously saved a draft, or if a previous editing session had timed
out. You can edit, preview or delete the draft using the standard icons which appear next
to the listing. Clicking the edit icon from the highlighted row at the top of the details
screen opens the current revision, not your last draft; be careful to edit from the draft
listing if you want to resume changes previously in progress, otherwise your draft file
will be overwritten with a new working copy of the current revision.

Inside the details screen is the action box; this gives access to all the additional features
available for the selected node, which may include creating new files, copying or moving
the node, viewing references, revisions, or output files. All these additional actions are
described in the next few chapters.

At the bottom of the details screen, you will see the last modified date of the node, and
the full repository path of the node. This path can be used to reference the selected file
from other areas in the site, for example to specify it as an include, link or image in
another file.

HyperContent v1.4 manual 27

© 2004 Columbia University in the City of New York

Create a new file

In the action box on the details screen of the Content Manager, the default section that
appears, when applicable, allows you to Create new files. You are presented with a list
of the document types you can create under the currently highlighted node. In order to
create a file in a deeply nested directory, you would normally navigate to and highlight
that directory first.

The list contains both XML document types and resource types that can be created in the
current context. These various document types are labeled according to the specific
project definition; the image above shows document types used for the HyperContent
web site. You will see a list specific to the project you are working on; talk to your
project administrator for details about the document types used in your project.

If there are several possible paths at which you might create a certain file type, you will
see a drop-down list reflecting the options; you may also see a listing "Other (open
prompt)". Selecting this option and/or clicking the New button will prompt you to enter a

HyperContent v1.4 manual Using the Content Manager: Create a new file 28

© 2004 Columbia University in the City of New York

name for the new directory or file you are creating. For resource files, you may also be
presented with a dropdown box you can use to select from one of several configured file
types, such as GIF or JPEG when creating an image.

Once you click new, and fill in the prompt if required, you will either get an error if
illegal characters were entered in the prompt, or be taken directly to the default editor
screen for that file, which is both file type and project specific. Often, the default editor
will be the Core Metadata editor.

HyperContent v1.4 manual 29

© 2004 Columbia University in the City of New York

Copying & Moving files

When applicable, one of the available sections in the action box of the Content Manager
details screen allows you to Copy or Move the highlighted file or directory.

If there is more than one location to which you can copy or move the currently
highlighted node, you can choose among them using the dropdown box next to the
relevant function. Once you click copy or move, you will be presented with a popup
window which allows you to specify the name of the copy, or rename the node if you are
moving it. By default, the current name of the highlighted node shows up in the prompt,
making it simple to correct minor misspellings, or keep the same name if you are moving
the node to a different parent directory.

Note
The options reflected on the copy/move screen are restricted according to your
permissions, and will only allow you to copy or move the node to a location in the
repository where it will serve the same semantic or structural function as in its current
location; thus, for example, you can copy a news file to another news file, but not to a
biography page. If you have a legitimate need to copy a file to a location where it will
become a different type, you should download the existing file's data, create the new file,
and upload the old data into the new file.

HyperContent v1.4 manual Using the Content Manager: Copying & Moving files 30

© 2004 Columbia University in the City of New York

Admin section

The admin section of the action box on the Content Manager details screen brings
together a few node-specific administration functions.

• Force Build whereas a normal build process only updates changed files, a force
build will regenerate every output file under this node

• Force Publish (same idea)
• Compact delete every historical revision of every file under the current node,

leaving only the current revision. This is useful for reclaiming disk space, but the
history of document changes is lost.

• Prune Empty Directories delete all empty directories under the current node
• Change Directory label (not shown) assign a label to a directory, that will show up

in the directory tree to aid users in navigating the site hierarchy.
• Download Zip download a zip file containing every file under the current node
• Upload Zip upload a zip file with changes to any of the files under the current node

Notes on working with zip files
When you download a zip, each file is archived according to its full path in the
repository. Therefore, even if you download a deeply nested directory, when you unzip
the file the higher level directories will be present, but no files outside of the selected
node will be included.

When you upload a file, it is expected that each file be archived according to its full path
in the repository. In this way, for example, you can zip a working copy of the entire
repository from your local hard disk, but if you upload it into a specific directory, only
files in that directory will be updated.

Force Copy
Normally, uploading a zip only saves a file into the repository if the last modified date of
the entry in the zip file is later than the last modified date of the file in the repository, or
if the file does not already exist in the repository. Force copy will copy all files from the
zip under the highlighted node, regardless of date; the overwritten revisions of files that
already existed in the repository are still accessible via the revisions section.

HyperContent v1.4 manual Using the Content Manager: Admin section 31

© 2004 Columbia University in the City of New York

Delete Other Files
Normally, files in the repository that are not present in an uploaded zip file are left
untouched. If you are interested in synchronizing the repository to your zip file, to bring
it in parallel with your working copy or a copy from another server, selecting this option
will delete any files under the current node that are not present in the uploaded zip. Use
this command with caution, as the deleted files are not recoverable.

Metadata in Zip Files
When you download a zip, each repository file is actually represented by two files in the
zip; one has the name of the repository file, and the other is the name of the repository
file with ".rdf" appended. This extra file contains the XML encoded RDF metadata for
that file; you may edit the metadata manually in this file, though you must be careful to
avoid changes that might not be parseable, as metadata must be in a format that the
software can understand. If you are uploading new files in a zip, you can leave out the
rdf file and an empty metadata set will automatically be generated by the server.
However, do not delete the rdf for files you have downloaded and are uploading back to
the server, unless you want to lose all of the metadata for those files!

HyperContent v1.4 manual 32

© 2004 Columbia University in the City of New York

Output section

The output section of the action box on the Content Manager details screen shows you
what kinds of output are generated from the highlighted repository file. You can link
directly to see the currently built or published versions of each form of output, and you
can show the include and XSL files required to generate this output.

HyperContent v1.4 manual Using the Content Manager: Output section 33

© 2004 Columbia University in the City of New York

References

The references section of the action box on the Contenent Manager details screen shows
you a listing of files which include the currently highlighted file; these are all the files
that might be affected by changing or deleting the highlighted file.

HyperContent v1.4 manual Using the Content Manager: References 34

© 2004 Columbia University in the City of New York

Revisions section

The revisions section of the action box on the Content Manager details screen show a
complete list of all historical revisions of the currently highlighted repository file, along
with who saved that revision and any comments they entered. The current revision is
highlighted and marked as selected by a radio button to its left; clicking the radio button
next to any other revision will mark it as the current revision, making it very simple to
back out of changes made to a file.

The standard icons to the right of each listing will allow you to

• Open this revision in the default editor for this file

• Preview the output for this revision

• Permanently delete this revision

HyperContent v1.4 manual Using the Content Manager: Revisions section 35

© 2004 Columbia University in the City of New York

Report screen

The report screen is launched in separate window from the portal any time a complex
action is requested by the user, including preview, build, publish, compact revisions,
rebuild search index, download or upload zip.

While the action is in progress, only the status bar will appear, giving you both a visual
cue and estimate in seconds of how long the action will take to complete.

The stop sign icon on the right allows you to gracefully stop the action in progress; a
build or publish command that is stopped will easily be picked up by re-issuing the
command, as only files that are not up-to-date are changed in a normal build or publish
request. Most requests are composed of many smaller activites, such as building an
individual file; the currently active "small" process is allowed to complete normally
before the overall request is stopped; only in the case where that small process exceeds a
10 second timeout will it be killed prematurely.

Once the action is completed, sections below the status bar will show you

• where the output is located (if any)
• what files were updated
• what files were deleted
• what errors occured
• any metrics compiled during the request

HyperContent v1.4 manual Using the Content Manager: Report screen 36

© 2004 Columbia University in the City of New York

Metrics
Each request may have a different set of metrics associated with it, or none at all. For
example, a compacting request reports how many old revisions were removed. A rebuild
index request reports how many files were indexed.

Preview, build and publish requests have a set of metrics designed to help you identify
potential implementation bottlenecks in you site, including

• How many files were processed
• The total number of kilobytes output
• total, minimum, maximum and average processing times for files associated with a

HyperContent v1.4 manual 37

© 2004 Columbia University in the City of New York

particular XSL stylesheet, or with a particular document types (identified by the
pattern associated with that type)

Note that the processing times will not add up to the total seconds elapsed as indicated at
the top of the report: various metrics will overlap, since each metric aggregates times
according to different but not mutually exclusive criteria. In order to highlight the most
important data, a rendering request only displays metrics whose aggregate time exceeds 1
second.

HyperContent v1.4 manual 38

© 2004 Columbia University in the City of New York

Permissions

Permissions allow you to define who can perform what activites on which portions of a
site. There are seven activities defined in HyperContent that can have their permissions
set independently:

• Read view the target repository path and preview its output
• Write edit content and save changes
• Create create new directories and files
• Delete delete directories and files
• Grant Permissions grant permissions on nodes
• Build build files
• Publish publish files

Permissions are set via the uPortal Permissions Manager, which is accessed either by
clicking "Permissions" in the details screen of a directory or file, or from the project
admin area.

The target of a permission is the selected repository node at which the permission is
granted or denied; this permission then applies recursively to all nodes under the selected
node, unless a contrary permission is explicitly set at a lower level. Project permissions
are set at the root of the repository; thus, in order to open a project, a user needs to have
read permission on the repository root.

The principal you assign permissions to is either a group or person; people inherit the
permissions of the groups to which they belong. After clicking Permissions, and before
reaching the pictured permissions screen, you will come to a Groups Manager screen
which allow you to select the people and groups to whom you would like to grant
permissions.

HyperContent v1.4 manual Using the Content Manager: Permissions 39

© 2004 Columbia University in the City of New York

http://mis105.mis.udel.edu/ja-sig/uportal/implementors/groupsmanager.html

Authoring Content
HyperContent provides a highly extensible and configureable content authoring
environment. Authoring functionality is divided into discrete authoring tools, called
editors, which may be combined in different ways to support different types of content.
When a file is opened for editing (by clicking the icon anywhere a file is listed in the

Content Manager channel), you enter authoring mode, which looks something like this:

The path of the file currently being edited is displayed on a dark background across the
top. At the right of this area, if applicable, a preview icon is shown; clicking here will

preview the output of the current state of your revisions, so you can see the effects of
your changes.

On the next line, against a medium background, you are presented with a list of the
editors available for this file. Each of the included editors is described in more details in
the following chapters. Clicking the name of an editor will switch to that tool, or you can
use the or buttons to move back and forth between the editors.

At the right of the medium background area, you see your options for exiting authoring
mode:

• Save save your changes; the previous revision can still be found on the revisions
screen

• Save Draft save a draft file of your changes, which you later recover from the file

HyperContent v1.4 manual Authoring Content 40

© 2004 Columbia University in the City of New York

details screen
• Discard throw away your changes

HyperContent v1.4 manual 41

© 2004 Columbia University in the City of New York

Dublin Core Metadata

The Dublin Core metadata editor allows you to edit the common properties defined by
the Dublin Core 1.0 specification. These properties apply to any file type; they are all
searchable in the repository, and properties such as title and description are frequently
used when building output pages.

HyperContent v1.4 manual Authoring Content: Dublin Core Metadata 42

© 2004 Columbia University in the City of New York

http://dublincore.org/documents/dcmi-terms/

WYSIWYG & XML

The XML/WYSIWYG editor gives you the ability to edit both arbitrary structured data
and free-form content with formatted text, lists, images and links.

More complete documentation coming soon

HyperContent v1.4 manual Authoring Content: WYSIWYG & XML 43

© 2004 Columbia University in the City of New York

Upload & Download

The upload editor allows you to download data to your desktop, edit it localy and upload
your changes.

HyperContent v1.4 manual Authoring Content: Upload & Download 44

© 2004 Columbia University in the City of New York

Plain Text

The text editor allows you to edit arbitrary text content right in your browser.

HyperContent v1.4 manual Authoring Content: Plain Text 45

© 2004 Columbia University in the City of New York

VCard (Contact Info)

The vcard editor allows you to edit contact informaton for people. You can choose to
search an ldap directory (if properly configured), upload a vcard file from your desktop
Personal Information Manager (such as Outlook), or start a new record from scratch.

The contact information page allows you to edit personal data and upload a photo of the
person.

HyperContent v1.4 manual Authoring Content: VCard (Contact Info) 46

© 2004 Columbia University in the City of New York

HyperContent v1.4 manual 47

© 2004 Columbia University in the City of New York

Spell Check

The Spell Check editor gives you a simple interface to correct spelling errors in the
currently open file. The errors are displayed five at a time, and you can use the controls at
the top to page back and forth through the errors.

Each misspelled word is displayed in bold text, followed by an action select box and the
word in its original context.

You may type a correction directly into the text box that shows the word in context, or
you can check the action list for suggested replacement values. You may also choose to
ignore a certain word for the duration of this spell-checking, or if your project is
configured with a custom dictionary, you can ask the system to learn the word so it will
not be identified as an error in any other documents in the project. You must click the
"correct" button for your changes to take effect.

Multilingual support

By default, the spell checker analyzes your document against the best dictionary it can
find corresponding to your session locale (user configurable in uPortal 2.2). You can
explicitly change the language of a specific document using the Dublin Core Metadata
Editor, and the spell checker will switch to the best available dictionary corresponding to

HyperContent v1.4 manual Authoring Content: Spell Check 48

© 2004 Columbia University in the City of New York

that language. The included dictionaries in version 1.3 of HyperContent are American
English (en_US), British English (en_GB), French (fr) and German (de). American
English is set as the default if no better match is found.

This feature was introduced in HyperContent v1.3

HyperContent v1.4 manual 49

© 2004 Columbia University in the City of New York

Images

The Image Editor allows you to upload and manipulate photos and images directly in
your browser. When you first open the Image editor, if there is not currently any image
data in the file, it will present you with an upload form. Once an image is loaded, if you
want to load a new image you can delete the current data with the (delete) icon to

return to the upload screen. You can use the (download) icon to download the current

image data to you local machine.

While working with an image, you can use the 'Zoom' select box to change the level of
magnification of the image in your browser. This will have no effect on the resolution of
the actual image data, which will always correspond to the '100%' zoom.

The Image editor allows you to perform three common image editing operations:
cropping, resizing and converting. Conversion happens automatically: if you are editing a
JPG file and upload GIF or PNG data, it will be converted. Similarly, if you are editing a
GIF file and upload JPG data, it will be downsampled to 256 colors and converted to GIF
format. Conversion is automatic in any direction between GIF, PNG and JPG formats.
Other formats may be supported in the future.

Cropping

Cropping is the act of trimming the borders of an image, normally to tighten the frame on
the area of interest. You simply click and drag over the image to specify your desired
cropping, which is represented by a blue box with red handles. The area which will be
trimmed off, outside the blue box, is darkened. You can click anywhere in the darkened
area to remove the cropping box or start over. You can also click and drag any of the red
handles on the blue box to move just that corner or edge, and the red handle in the middle
allows you to move the crop box over the image while maintaining its current
dimensions. On the left, the Width and Height boxes will update to reflect the width and
height of the cropped area, so you can easily adjust your cropping box to specific
dimensions.

HyperContent v1.4 manual Authoring Content: Images 50

© 2004 Columbia University in the City of New York

Resizing

Resizing is the act of increasing or decreasing the resolution of an image. For example, if
you have uploaded a multi-megapixel image from your digital camera, you normally
want to decrease its resolution for display on the web. There are two ways to control the
resizing of your image; you can click and drag the (resize) icon on the lower right

corner of the image to increase or decrease the resolution, or you can type in a target
width, height or percentage scale in the boxes along the left side of the image.
Adjustments using any of these controls will update the others automatically, and if you
have a cropping box, it will be resized along with the image so that it continues to frame
the same portion of the image.

This feature was introduced in HyperContent v1.3

HyperContent v1.4 manual 51

© 2004 Columbia University in the City of New York

Build Options

The Build Options editor allows you to specify some file-specific parameters that will be
used at the time the file is built.

One option is to add includes; for example, by including a particular faculty member bio
in a course page, it might allow the site to generate links between the course and faculty
member. Replacement allows you to tell the system to completely replace the contents of
a file with those retrieved from another file in the repository, or even from a URL. This
makes it possible, for example, to link to some source of XML on the internet and have it
fulfill a particular function within your site. You can also “hide” the file, such that any
output versions of the file, and any references to it, will be removed from the next site
build.

HyperContent v1.4 manual Authoring Content: Build Options 52

© 2004 Columbia University in the City of New York

Navigation / Site Map

The navigation editor allows you to easily shape navigation or site map information
based on templates configured in the XML editor. You can re-order items within a list by
clicking and dragging the handle icon to the left of a listing, suppress an item by clicking
the trash can icon, or add a new link at a given level by using the add icon.

this feature was introduced in HyperContent 1.4

HyperContent v1.4 manual Authoring Content: Navigation / Site Map 53

© 2004 Columbia University in the City of New York

Developing Sites
This developer documentation seeks to describe the fundamental building blocks and
choices which go into creating a completely custom web site with HyperContent.

The code base for HyperContent has been developed with the philosophy of attempting to
accommodate the unforeseen; there are no assumptions made about the structure of a web
site, of information or navigation architecture, supported media types or data structures.
There is an XML grammar defined for specifying the directory structure of a web site and
defining certain semantics and relationships of components within that structure. At the
most granular level of data, the built-in-tools rely on XML DTDs to define data
structures, and RDF to support metadata structures. The generation of HTML or PDF can
be accomplished through built-in support for XSL transformations, while a filtering
architecture leaves open the possibility of plugging in other templating languages. Data
reuse across multiple pages is accomplished through the use of XML Includes. Built-in
authoring tools support a broad number of applications, while a framework makes it easy
to plug in additional authoring tools and mix and match different authoring tools as
required in a given project.

The tradeoff for all of this flexibility is that developing a new site from the ground up can
be a bit daunting, as there are many configuration choices that can be made, and much
thought must go into the development of DTDs to define data structures and the use of
XML includes and XSL to automate construction of site navigation. As you get started
developing with HyperContent, you may want to read through this and build up a project
as you go. Once you are fluent with the process, you will likely still find it useful to refer
back to these pages for useful tidbits.

HyperContent v1.4 manual Developing Sites 54

© 2004 Columbia University in the City of New York

Project Definition Files

HyperContent allows you to configure an unlimited number of projects, each of which
can represent a completely unique site. The configuration for a project is encapsulated in
its project definition file, which is an XML file format; the contents of this file are
discussed throughout the course of this developer documentation, intermixed with the
background information and global configuration options you need to understand to make
the most of HyperContent.

Project definition files are managed via a special project called "HyperContent Project
Definitions", which allows you to use HyperContent to manage its own configuration
files. The project definition for this special project is stored in the Projects.xml properties
file.

This diagram shows the skeletal structure of a project definition file: each highlighted
label refers you to the chapter of this documentation that deals with the set of tags
directly beneath it. Chapters not listed in the diagram contain more general background,
and do not deal directly with the semantics of project configuration.

HyperContent v1.4 manual Developing Sites: Project Definition Files 55

© 2004 Columbia University in the City of New York

Filesystems

The first consideration to be made when sitting down to implement a web site with
HyperContent is where will the data live, and where will it end up? HyperContent relies
on a single FileSystem API to communicate with both the data repository and the
destination for output. Multiple implementations of this API are included; the standard
repository implementation uses a locally mounted filesystem and stores data, metadata,
and historical revisions of files in a custom structure, as well as providing locking and
full content searching. A local non-editioning version is available to publish standard data
files to a locally mounted filesystem, and FTP and SFTP implementations make it
possible to push content to a filesystem on a remote server, for example if your web
servers are on different machines than HyperContent.

Up to four filesystems are configured for each project; a filesystem must be configured
for the repository, and if the project is intended to produce output, preview, build and
publish filesystems should also be configured. The preview space is for volatile
renderings of content that may not be intended for publication. The build space is where
current data is rendered to, and can be reviewed for accuracy before being published. The
publish space is where built files are copied to in order to make them public. The
preview, build and publish filesystem typically map into the document tree of a web
server, so that their contents can be viewed with a browser.

Here is a sample configuration XML fragment that shows the four filesystems configured
using the four main included implementations, with comments indicating what each of
the arguments is.

HyperContent v1.4 manual Developing Sites: Filesystems 56

© 2004 Columbia University in the City of New York

HyperContent v1.4 manual 57

© 2004 Columbia University in the City of New York

Path patterns

Every file in a HyperContent project maps to a path pattern specified in one of three main
element types in the project definition document: xml-doc, xml-doctype or
resource-directory. These elements are discussed in more detail in the "XML Content"
and "Non-XML Content" chapters; for now, it is important to note that each of these
elements configures a unique class or instance of content, by mapping one path pattern to
a semantic label and 0 or more forms of output. A path pattern might simply look like a
literal path in the filesystem, such as

/index.xml

/config/navigation/topnav.xml

or, it might contain wildcards

/images/*

/docs/*/*

/courses/*/index.xml

When a wildcard occurs as the final character of path pattern, it represents a file; the file
extension is not part of the pattern, as it will depend on the element which is being used
to configure the content. When a wildcard is followed by a forward slash, it represents a
directory name.

Every path pattern for a configured element must begin with a "/" to indicate the root of
the repository; patterns are also used to specify includes, covered in a separate chapter,
which is the only time you may leave off the leading "/" to specify a relative location. It
is important that any paths representing directories end with a trailing "/", such as the
base-url of an output filesystem (e.g. "http://hypercontent.sourceforge.net/docs/").

A forward slash "/" should always be used as the directory separator, regardless of the
operating system in use.

An Example

Say you want to define a Document Type "Faculty Bio"; you could specify its path at
"/faculty/*". Then your repository could look like this:

HyperContent v1.4 manual Developing Sites: Path patterns 58

© 2004 Columbia University in the City of New York

/faculty/

marybprof.xml
johnqteacher.xml

If you wanted to also have a Document type "Faculty Course Listing" associated with the
professor, you would want to organize them together in a directory. In that case, you
would want the directory name to be the wildcard:

/faculty/*/bio.xml
/faculty/*/courses.xml

Which could make your repository more like this:

/faculty/

marybprof/

bio.xml
courses.xml

johnqteacher/

bio.xml

If you wanted to construct the output with links to a number of individual course pages,
also associated with the professor, you could add a "Faculty Course" Document type with
a path of "/faculty/*/*". This would allow you to create new courses only for faculty
members that have already been created in the project. Your repository could then look
like:

/faculty/

marybprof /

bio.xml
courses.xml

m101.xml

m102.xml

johnqteacher /

HyperContent v1.4 manual 59

© 2004 Columbia University in the City of New York

bio.xml

If you wanted to allow each professor to store graphics to present in their course
documents, you could create a resource directory called "Faculty images" with a path of
"/faculty/*/images/*" accepting content types image/jpeg and image/gif.

/faculty/

marybprof /

bio.xml
courses.xml

m101.xml

m102.xml

images/

m101Logo.gif
m102Logo.jpg

myportrait.jpg

johnqteacher /

bio.xml

In the Content Manager, users will only be presented with options to create new files in
locations where only a single wildcard is left to fulfill. For example, you could not create
a new "Faculty image" file at "/faculty/jimassistant/images/jimbo.jpg" without first
creating "/faculty/jimassistant/bio.xml" or "/faculty/jimassistant/courses.xml".

As you can imagine, this flexible system of defining paths can accommodate very deep
and complex filesystems while maintaining a strict understanding of what kinds of data
live in each directory. This controlled directory structure is essential to the power of
XML includes, as data relationships are imprinted onto the very structure of the
filesystem.

HyperContent v1.4 manual 60

© 2004 Columbia University in the City of New York

Content Types

HyperContent is capable of managing any type of file that has an associated MIME type.
MIME types are globally configured in the properties file "ContentTypes.xml": this file
must contain a declaration for any MIME type you want to use in a HyperContent
Project. Here is a sample content type declaration:

The root level tag of a content-type declaration, "content-type", has three attributes:

• type: either the preferred or only mime type for this content
• label: human-readable name for an instance of this content type
• icon: the location of a file (relative to the web application root) representing an icon

for this content type
(a generic blank icon is provided at
"media/edu/columbia/hypercontent/doc_blank.gif")

There are four tags which may appear inside a content-type declaration:

• equivalent: specifies an alternate mime type for the same content
• file-extension: specifies a file extension associated with this content type. If there is

more than one, one should have the attribute preferred="true" to indicate it is the
preferred extension.

• editor: the key of an authoring tool, as specified in Editors.xml, which should be a
global default for this content type. Multiple editors can be configured, and will
appear in the order listed. Default editors can be overridden within a project's
definition file.

• word-loader: (not shown) has a single attribute "class" used to specify an
implementation of the IWordLoader API that can be used to expose a file's content
to the spell checker.

Content types are used to configure the contents of resource directories in HyperContent
projects; see the chapter "Non-XML Content" for more information.

HyperContent v1.4 manual Developing Sites: Content Types 61

© 2004 Columbia University in the City of New York

XML Content

A Brief Introduction to XML
XML is a text format that allows for information to be expressed inside of tags that
describe its structure. What makes XML useful is the preponderance of tools available for
accessing and manipulating this structured data, from libraries in all the major
programming languages to built-in functions in major web browsers.

Grammars

A related set of XML tags, their possible structural permutations and data contents
constitute an XML grammar. XML grammars can be defined by anyone to meet their
own needs, or can be agreed upon by communities to enable a standardized exchange of
like information between disconnected and even competitive products. Grammars can be
described in a DTD (Document Type Definition) or XML Schema file, enabling standard
processing tools to determine whether an XML document is a valid instance of a
particular grammar.

Transformations

A powerful companion technology to XML is called XSL: it provides a way to transform
XML from one grammar to another using templates. It is this technology which makes
XML perfectly suited to managing web site content; data can be stored in XML
according to custom grammars, and XSL makes it possible to output that data as XHTML
for viewing in a web browser, or as Formatting Objects which can be used to generate
PDF files. XSL allows you to implement look-and-feel and formatting without any
modification to the XML source.

Working with XML in HyperContent

XML DTDs

DTDs define the possible structure of an XML file. DTDs are normally referred to within
the prolog of an XML file in a DOCTYPE declaration. In HyperContent, this declaration

HyperContent v1.4 manual Developing Sites: XML Content 62

© 2004 Columbia University in the City of New York

may point to the URL of a DTD on the network, a URL which is mapped to a local
resource by an XML catalog, or to the path of a file in the same repository as the XML
file. HyperContent has a built-in XML editor that allows users to author XML files in
accordance with the grammars you have specified in your DTDs, directly from their web
browser. HyperContent also provides a framework for plugging in custom web-authoring
interfaces to provide more tailored tools for managing files according to specific XML
grammars. For an introduction to DTDs, visit w3schools.

XHTML

HyperContent's built-in XML editor also supports WYSIWYG XHTML editing. This is
automatically enabled for any XML element named "html". You can either specify
"html" as the root element of a document, or as a child element so that you can store
XHTML along with custom structured data. HyperContent will support any number of
"html" elements in a document.

XML Catalog

Oasis, an Internet standards body, has defined a standard format for a file which can be
used to map URLs of Internet resources to other URLs or local copies of those resources.
This is useful to decrease load time of DTDs, to protect against network outages, to allow
for offline development, or to quietly "convert" XML files conforming to a certain DTD
to an updated or modified version of the DTD, without removing the original.
HyperContent provides an XML catalog file called "Catalog.xml" in the hypercontent
properties directory. Please visit the OASIS page for more information.

Managing structure across many XML files

As a text file format, XML holds out the promise of being legible by both computers and
humans. However, in dealing with large amounts of data it becomes challenging to fulfill
this promise: to maintain human legibility, it is of significant value to break the data up
into smaller files, while for machine processing one giant file is required to maintain
coherent data structures. HyperContent makes it possible to achieve both goals by
allowing you to define structure across multiple XML files, which can be managed
individually by humans but processed together by the computer.

HyperContent allows you to use path patterns to identify particular data structures
according to where the files are stored in the filesystem, so that you can use XML
Includes to bring related data together at build time. In your XSL transformations you can
work with included data based on its path pattern in order to apply common formatting,
just as you would if each file were an element in one giant XML file.

There are two elements that can be used in a HyperContent project definition to define
XML content:

HyperContent v1.4 manual 63

© 2004 Columbia University in the City of New York

http://www.w3schools.com/dtd/default.asp
http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

< xml-doc >

An xml-doc tag is used to specify a single XML file that must exist in the
project repository. Common uses for this are specifying a home page, XSL
files, and configuration files. An xml-doc tag has three required attributes:
definition =

The location of the DTD which specifies the grammar this file
conforms to. This will be used in constructing the DOCTYPE portion
of the file's prolog. This can be a URL, the path of a DTD in the
project repository (e.g. '/dtds/common.dtd'), or blank if this will be an
xsl file. If you want to specify a document to hold a custom
dictionary for the project, to be used by the spell checker, you should
specify the URL
http://hypercontent.sourceforge.net/dtd/dictionary.dtd.

path =

The path of this file in the project repository. e.g.

/index.xml

/xsl/common.xsl

/dictionary.xml

root =

The name of the root element of this document. e.g.

xsl:stylesheet

myelement

html

< xml-doctype >

The xml-doctype tag is used to describe a class of XML documents: it acts as a
template for 0 or more XML files that share the same structure and function

HyperContent v1.4 manual 64

© 2004 Columbia University in the City of New York

within the site.

definition = (see above)
path =

The path of an xml-doctype differs from that of an xml-doc in that it
it describes a possible rather than literal location. Possibilities are
expressed using wildcards: e.g. '/*/index.xml' indicates the index
page of directory beneath the repository root; '/*/*' indicates a file
one level down in the repository. Wildcards are replaced with actual
names by authors at the time they create a new instance of this
doctype. For a more complete explanation and examples, see the
chapter on path patterns.

root = (see above)
label =

The label of a doctype should be a short, descriptive text describing a
file which is an instance of this doctype. For example, if you were
specifying a doctype for a faculty member page, you could label it
"Faculty" or "Faculty Member Biography".

template =

This allows you to specify the path of a file in the repository which
will act as a template for new instances of this doctype. When an
author creates a new instance of this doctype, they will be provided
with a copy of the data and metadata from the template file. If you do
not specify a template, the new file will consist of an empty root
element which can be populated from scratch. You may want to
specify the template file as an xml-doc, to guarantee that it can not be
removed from the repository.

Forms of Output

Both xml-docs and xml-doctypes can be configured with 0 or more forms of output. For
example, you might configure a file to be output as standard HTML, accessible HTML,
RSS and PDF. Other files may not have any forms of output, such as XSL and
configuration files - these are intended to be used in the maintenance and building of the
site, rather than published.

HyperContent v1.4 manual 65

© 2004 Columbia University in the City of New York

< output >

The output tag has two required attributes

content-type =

This attribute is used to specify the content type of the output file;
this will be used to determine the appropriate file extension, and may
trigger specific behavior in transformation or filters. For example,
specifying a content-type of "application/pdf" triggers the XSL
transformation filter to treat its output as Formatting Objects and to
render these into a PDF file. "text/html" is the content type for
HTML files. Note that you can only have one output form of a given
content-type per base directory.

basedir =

By default, the base directory of a form of output is set to "/", which
indicates that the output file will live at the same path in the output
filesystem as in the repository, with only the file extension changing
according to the content type. If you need to have several forms of
output with the same content type, for example standard and
accessible HTML, you could specify a basedir of "/" for the standard
form and "/acc/" for the accessible form. The accessible version of
the home page would then be output to "/acc/index.html".

The output element can be configured with 0 or more include elements, 0 or
more filter elements and 0 or 1 transform elements. Follow the links to the
appropriate chapters for more information.

Overriding Default Editors

By default, XML files will be configured to use the default editors as configured in the
Content Types file. You can override the defaults for an xml-doc or xml-doctype by
adding editor elements inside it. You must specify all the editors that you want to be
used; once you add an editor element, the defaults are ignored. The editors appear in the
order you specify them: thus, the first editor element will be the opening screen for an
author who chooses to edit a file corresponding to this xml-doc or xml-doctype.
< editor >

The editor element has a single attribute:
key = (see the chapter on Editors)

HyperContent v1.4 manual 66

© 2004 Columbia University in the City of New York

RDF: Extensible Metadata

About metadata and RDF

Metadata is information about a resource. In the context of HyperContent, that resource
can be any file that lives in a repository - whether it is an XML file, an image file, a
Microsoft Word document, or any other kind of file. The most common use of metadata
is to indicate a title, description and keywords about a resource, but robust metadata
support requires a framework that can be extended to store any type of specialized or
custom metadata.

RDF, short for Resource Description Framework, is a metadata framework standard
issued by the World Wide Web Consortium (w3c), the same group responsible for
HTML, XML, HTTP, CSS, DOM and many other standards which define the
interoperability of web tools. RDF, as a way of presenting structured information, bears
some abstract resemblance to XML, and can in fact be represented in XML. At its core,
however, RDF uses a directed graph model which, while lacking the greater flexibility of
XML, makes it possible to make metadata declarations and queries on the basis of simple
statements.

An RDF statement has three components; a resource, a property, and a value. For
example, the RDF for the file which is used to generate this page contains the statement
"The resource located at '/docs/manual/develop/rdf.xml' has a property 'title' with the
value 'RDF: Extensible Metadata'". In this case, the value is a simple string; it is also
possible that the value of a statement might be another resource, which can also have
properties. For example, the file which represents the author of this document has two
statements which combined would read "The resource located at '/contributors/alex.xml'
has a property 'VCard' whose value is a resource that has a property 'Full Name' with the
value 'Alex Vigdor'". This chaining of resources as the values of properties of other
resources allows for an XML-like nesting of metadata information.

A concept borrowed from XML that is critical to RDF is that of namespaces; a
namespace represents the origin and specific intent of a set of names. These names might
be the names of XML elements or RDF properties; the namespace is used to resolve
ambiguity that can result, for example, if two different metadata standards both use a
property with the same name, but with a different intent or structure. A namespace is
identified by a URI, which is mapped to a prefix for readability. For example, the 'title'
property used in HyperContent is in a namespace declared by the Dublin Core Metadata
Initiative version 1.0, which uses the namespace 'http://purl.org/dc/elements/1.1/'. If that
URI is mapped to the prefix 'dc', the Dublin Core title property is notated as 'dc:title'.

HyperContent v1.4 manual Developing Sites: RDF: Extensible Metadata 67

© 2004 Columbia University in the City of New York

RDF in XML

The W3C has issued a standard for representing RDF in XML, so that XML can be used
as the language for transmitting RDF information without losing the critical semantics of
RDF. This standard is fairly flexible in terms of the XML structure, but this flexibility
threatens to make RDF/XML very difficult to use with XPath, the query language used in
XSL. HyperContent has implemented an XML representation of RDF that is compliant
with the standard, but adopts a more rigid subset of the spec which is especially tailored
for querying with XPath. Specifically, the resource -> property -> value relationship is
represented in nested XML tags, where a property is represented as a tag with the
namespace and name of the property; if the value is a resource, its properties are
represented as child tags. If the value is data, it is represented as a child text node of the
property tag. This XML representation is used both for metadata includes, and for the .rdf
files that represent metadata when a zip archive of content is downloaded from the
Content Manager.

Here's what the RDF for this file looks like serialized in XML. Note that the root element
rdf:RDF is the container for a collection of statements, and provides the mapping of
namespaces to prefixes. Four namespaces are declared here: the namespace for rdf, the
'fs' namespace for the filesystem, the 'dc' namespace for Dublin Core, and the 'cms'
namespace for HyperContent. The fs:File tag represents the file resource, whose
properties are child tags.

HyperContent v1.4 manual 68

© 2004 Columbia University in the City of New York

RDF Grammars

The next two chapters offer specific details about two RDF metadata grammars supported
by custom editors in HyperContent, Dublin Core and VCard. Here we list the properties
defined by two core grammars in HyperContent.

Filesystem grammar

xmlns:fs="http://www.ais.columbia.edu/sws/xmlns/cufs#"

The filesystem code which provides the repository layer for HyperContent has its own
namespace; this namespace has a few properties which are used specifically for search
indexing but do not appear in the RDF model generated by the filesystem. The principal
property of interest for site developers is fs:File; the resource which describes a file in the
repository has the property 'rdf:type' with the value 'fs:File'. When serialized in XML,
this is reflected as an element 'fs:File' which represents the file resource; all the file's
metadata properties are represented as children of this element. Thus in XPath a file's
metadata properties are always located with a string like "rdf:RDF/fs:File/{ns:property}".
See the example above for help visualizing the structure.

HyperContent grammar

xmlns:cms="http://www.ais.columbia.edu/sws/xmlns/cucms#"

HyperContent supports a number of built-in metadata properties which may be applied to
a resource of type fs:File:

cms:comment

Text entered by the person who edited this file revision at the time they saved
it.

cms:editor

The name of the person who saved this revision of the file.

cms:hidden

When present with a value of "true", indicates that this file should not be built
or processed as an include.

cms:replacement

HyperContent v1.4 manual 69

© 2004 Columbia University in the City of New York

The value of this property specifies the path of a file or a URI for a resource
from which data and metadata should be retrieved at runtime, to replace the
contents of this file. Can be useful for creating a local placeholder for a
network resource, or mirroring the contents of a file at different locations in the
output filesystem.

cms:includes

HyperContent support ad-hoc, user-specified file includes. These may be used
to make connections between two files, such as a course file and a faculty file
to indicate the faculty member teaches that course. The value of the
cms:includes property is a resource of type rdf:Bag. rdf:Bag is a special
collection type of resource in RDF, which will contain one or more rdf:li
resources. Each rdf:li resource, in turn, will have a property of type
cms:Include, which may have the following properties:

cms:data

a value of yes indicates the data of the specified resource should be
included.

cms:metadata

a value of yes indicates the metadata of the specified resource should
be included.

cms:location

specifies the path in the repository or URI of the resource to be
included.

cms:Thumbnail

The value of the cms:Thumbnail property is a resource which has the following
properties.

cms:width

Width of the thumbnail image.

cms:height

Height of the thumbnail image.

cms:format

The mime type representing the thumbnail image format

HyperContent v1.4 manual 70

© 2004 Columbia University in the City of New York

cms:data

The binary thumbnail image data encoded in Base64

HyperContent v1.4 manual 71

© 2004 Columbia University in the City of New York

Dublin Core Metadata

The Dublin Core Metadata Initiative has established a common set of 15 metadata
properties which apply to resources of all types across many areas of interest. The
"Dublin Core", as the DCMI Metadata Terms are often referred to, encapsulates all of the
metadata that many applications require. DCMI also has a standard binding to RDF, so
using Dublin Core in HyperContent provides a way to store metadata that is completely
standards based and widely understood by people and machines alike.

HyperContent has a built in editor for Dublin Core metadata; here is a description of the
fifteen elements taken from the original publication, with some clarifications made in
descriptions of version 1.1, and annotations with usage information specific to
HyperContent.

Dublin Core 1.0 Namespace:

dc="http://purl.org/dc/elements/1.0/"

Title

dc:title
The name given to the resource, usually by the Creator or Publisher.

HyperContent displays the Title of a file in the Content Manager
when the file is selected, or appears in a list such as search results. It
is recommended to use Title as the text of links to a file, and in the
title tag of HTML output.

Author or Creator

dc:creator
The person or organization primarily responsible for creating the intellectual
content of the resource. For example, authors in the case of written documents,
artists, photographers, or illustrators in the case of visual resources.

HyperContent automatically sets the active users name as Creator
when a new file is created

HyperContent v1.4 manual Developing Sites: Dublin Core Metadata 72

© 2004 Columbia University in the City of New York

http://dublincore.org/
http://dublincore.org/documents/1998/09/dces/
http://dublincore.org/documents/2003/06/02/dces/

Subject and Keywords

dc:subject
The topic of the resource. Typically, subject will be expressed as keywords or
phrases that describe the subject or content of the resource. The use of
controlled vocabularies and formal classification schemas is encouraged.

Description

dc:description
A textual description of the content of the resource, including abstracts in the
case of document-like objects or content descriptions in the case of visual
resources.

Publisher

dc:publisher
The entity responsible for making the resource available in its present form,
such as a publishing house, a university department, or a corporate entity.

Other Contributor

dc:contributor
A person or organization not specified in a Creator element who has made
significant intellectual contributions to the resource but whose contribution is
secondary to any person or organization specified in a Creator element (for
example, editor, transcriber, and illustrator).

Date

dc:date
A date associated with the creation or availability of the resource.

HyperContent v1.4 manual 73

© 2004 Columbia University in the City of New York

Recommended best practice is defined in a profile of ISO 8601 (
http://www.w3.org/TR/NOTE-datetime) that includes (among others) dates of
the forms YYYY and YYYY-MM-DD. In this scheme, the date 1994-11-05
corresponds to November 5, 1994.

HyperContent sets Date to current the date when a file is first
created.

Resource Type

dc:type

Type includes terms describing general categories, functions, genres, or
aggregation levels for content. Recommended best practice is to select a value
from a controlled vocabulary (for example, the DCMI Type Vocabulary). To
describe the physical or digital manifestation of the resource, use the FORMAT
element.

HyperContent will set the Type of a file when it is created to DCMI
Image, Text, or Audio according to the file's MIME type. If none of
those is appropriate, it is left blank. The user can select the type from
a dropdown list of all the DCMI types. This list can be controlled in
the properties file dcmi-types.xml.

Format

dc:format
The data format and, optionally, dimensions (e.g., size, duration) of the
resource. The format is used to identify the software and possibly hardware that
might be needed to display or operate the resource. Recommended best practice
is to select a value from a controlled vocabulary (for example, the list of
Internet Media Types defining computer media formats).

HyperContent sets the Format of a file to it's MIME type when it is
created.

Resource Identifier

dc:identifier

HyperContent v1.4 manual 74

© 2004 Columbia University in the City of New York

http://dublincore.org/documents/dcmi-type-vocabulary/
http://www.isi.edu/in-notes/iana/assignments/media-types/media-types

A string or number used to uniquely identify the resource. Examples for
networked resources include URLs and URNs (when implemented). Other
globally-unique identifiers, such as International Standard Book Numbers
(ISBN) or other formal names would also be candidates for this element.

HyperContent sets the Identifier of a file to its path in the repository
at the time it is created.

Source

dc:source
Information about a second resource from which the present resource is
derived. While it is generally recommended that elements contain information
about the present resource only, this element may contain metadata for the
second resource when it is considered important for discovery of the present
resource.

Language

dc:language
Recommended best practice is to use RFC 3066 which, in conjunction with
ISO639, defines two- and three-letter primary language tags with optional
subtags. Examples include "en" or "eng" for English, "akk" for Akkadian", and
"en-GB" for English used in the United Kingdom.

HyperContent's built-in Dublin Core editor allows the user to select
from a list of all languages represented by two letter language codes;
this list can be edited in the properties file language-codes.xml. The
Language, if set, will be used to find the best corresponding
dictionary for use in the spell checker.

Relation

dc:relation
An identifier of a second resource and its relationship to the present resource.
This element is used to express linkages among related resources.
Recommended best practice is to identify the referenced resource by means of a
string or number conforming to a formal identification system

HyperContent v1.4 manual 75

© 2004 Columbia University in the City of New York

http://www.ietf.org/rfc/rfc3066.txt
http://www.loc.gov/standards/iso639-2/langhome.html

Coverage

dc:coverage
Typically, Coverage will include spatial location (a place name or geographic
coordinates), temporal period (a period label, date, or date range) or jurisdiction
(such as a named administrative entity). Recommended best practice is to select
a value from a controlled vocabulary (for example, the Thesaurus of
Geographic Names) and to use, where appropriate, named places or time
periods in preference to numeric identifiers such as sets of coordinates or date
ranges.

Rights Management

dc:rights
A rights management statement, an identifier that links to a rights management
statement, or an identifier that links to a service providing information about
rights management for the resource.

HyperContent v1.4 manual 76

© 2004 Columbia University in the City of New York

http://www.getty.edu/research/tools/vocabulary/tgn/index.html
http://www.getty.edu/research/tools/vocabulary/tgn/index.html

VCard Metadata

Contact Information: HyperContent, VCard and
LDAP

As early versions of HyperContent grew to host a number of large web sites, the most
common type of structured information required across all the sites turned out to be
contact information, used in constructing biographical pages for faculty and students, as
well as departmental directories. The first sites stored this information in XML, but a
common request was for a more user friendly way to enter contact information, with the
ability to retrieve as much information as possible from LDAP.

The most pervasive Internet standard related to contact information is VCard, a standard
published in 1998 by the Internet Society and widely supported by email and Personal
Information Management software. VCard 3.0 supports not only basic contact
information (name, phone numbers, email address, postal addresses, etc), but provides
support for binary data such as a photograph.

By storing VCard information as metadata, HyperContent makes it possible to associate
this standard contact information with any type of file, for example an XML file
containing a biography of the person. The W3C has posted a note regarding the
representation of VCard data in RDF, but as the responses on the W3C site point out, the
proposal is fundamentally flawed in ways that have not been addressed. The effort has
therefore not produced a usable standard for the representation of VCard in RDF, so
HyperContent implements a workable VCard RDF grammar in its own namespace. This
is not of concern for interoperability, as HyperContent can take its RDF-encoded VCard
data and publish it in the standard plain text VCard format described in the original
specification, and also allows content authors to import standard VCard files from their
email or PIM software directly into the VCard editor. Round trips between standard
VCard encoding and HyperContent's RDF VCard encoding are lossless, even with
custom X-object and X-parameters or other standard VCard elements not displayed in the
VCard editor.

LDAP integration allows a user to populate standard VCard fields in the VCard editor
with the results of an LDAP query, saving time and reducing the chance of errors. The
configuration file LDAPtoVCARD.xml allows you to specify LDAP connection
information, and has a VCard RDF template in XML which can be used to associate
LDAP fields with particular VCard properties. Fields from the LDAP result are
referenced by name in curly braces (e.g. {givenname}), and other values can be
hardcoded (e.g. institution name).

It is important to understand the structure of HyperContent's RDF representation of

HyperContent v1.4 manual Developing Sites: VCard Metadata 77

© 2004 Columbia University in the City of New York

ftp://ftp.isi.edu/in-notes/rfc2426.txt
http://www.w3.org/TR/vcard-rdf

VCard in order to access VCard data in XSL transformations. For information about the
values and use of specific properties, refer to the VCard RFC.

HyperContent VCard 3.0 Namespace

vcard="http://www.ais.columbia.edu/sws/xmlns/vcard3.0#"
vcard:VCARD

The value of the vcard:VCARD property is the resource to which all other
vcard properties are applied. In XPath, it will always appear between the fs:File
element and the desired VCard attribute: e.g.
'rdf:RDF/fs:File/vcard:VCARD/vcard:FN/vcard:text'.

All of the capitalized properties listed below have values which are resources, which may
all have common VCard properties assigned to them (listed at the end), and unless
otherwise specified have a property vcard:text which contains the actual string data.
vcard:FN

vcard:ADR

The value of the vcard:ADR property is a resource which may have the
following properties applied to it (the values of these properties are strings
containing the relevant data):

vcard:poBox
vcard:extendedAddress

vcard:streetAddress

vcard:locality

vcard:region

vcard:postalCode

vcard:countryName

vcard:N

The value of the vcard:N property is a resource which may have the following
properties applied to it (the values of these properties are strings containing the
relevant data):

vcard:familyName
vcard:givenName

vcard:additionalName

HyperContent v1.4 manual 78

© 2004 Columbia University in the City of New York

ftp://ftp.isi.edu/in-notes/rfc2426.txt

vcard:honorificPrefix

vcard:honorificSuffix

vcard:NICKNAME

Nickname is a multivalued attribute; the values are kept in an rdf:Bag. The
nodelist of nicknames can be retrieved in XPath as
'rdf:RDF/fs:File/vcard:VCARD/vcard:NICKNAME/rdf:Bag/rdf:li'.

vcard:BDAY

vcard:BDAY may have either a vcard:text property or a vcard:Date and
optional vcard:Time property - see below for more details.

vcard:PHOTO

A photo resource may either have a vcard:uri property whose value is the
network location of the graphic, or a vcard:binary property whose value is the
base64 encoded image data. Note that the actual base64 data is not passed
through to XSL transformations for the sake of efficiency, but testing for the
presence of 'rdf:RDF/fs:File/vcard:VCARD/vcard:PHOTO/vcard:binary' will
properly reflect whether there is binary image data in the source file. Also note
that the common vcard property vcard:type has the corresponding mime image
subtype as a value (HyperContent uses jpeg by default).

vcard:LABEL

vcard:TEL

The string data for vcard:TEL is the value of the vcard:phoneNumber
property.

vcard:EMAIL

vcard:MAILER

vcard:TZ

The data for vcard:TZ is specified with either the vcard:text or
vcard:utcOffset property as appropriate.

vcard:GEO

vcard:GEO has two properties which express the relevant coordinates:
vcard:longitude and vcard:latitude.

vcard:TITLE
vcard:ROLE
vcard:LOGO

HyperContent v1.4 manual 79

© 2004 Columbia University in the City of New York

Same possible structure as vcard:PHOTO, see above.

vcard:AGENT

vcard:Agent has one of three properties, vcard:uri pointing to a reference on
the network, vcard:text for a plain text value, or vcard:VCARD referencing a
resource which contains VCard properties for the agent.

vcard:ORG

vcard:ORG supports a vector of values, used to express a hierarchy. The value
is an rdf:Seq resource, whose rdf:li properties express the levels of the
hierarchy from the top down.

vcard:CATEGORIES

Categories is a multivalued attribute; the values are kept in an rdf:Bag.

vcard:NOTE

vcard:PRODID

vcard:REV

vcard:REV may have either a vcard:text property or a vcard:Date and
optional vcard:Time property - see below for more information.

vcard:SORT-STRING

vcard:SOUND

vcard:SOUND has the same possible structure as vcard:PHOTO (see above),
except the vcard:type property is used to indicate the corresponding MIME
audio subtype.

vcard:UID

vcard:URL

The address of a vcard:URL is the value of the vcard:uri property.

vcard:CLASS

vcard:KEY

vcard:KEY has either a vcard:text property or a vcard:binary property (with
base64 encoded binary data).

vcard:X-OBJECT

HyperContent v1.4 manual 80

© 2004 Columbia University in the City of New York

Two properties apply to vcard:X-OBJECT; vcard:xname indicates the object's
name and vcard:text indicates the object's value.

Date and Time

There are two special resources which model Date and Time, that may be applied as
properties to either vcard:BDAY or vcard:REV

vcard:Date

vcard:Date has three properties:

vcard:year
vcard:month

vcard:day

vcard:Time

vcard:Time has three properties:

vcard:hour
vcard:minute

vcard:second

Common VCard properties

The following properties may apply to any of the top level (all-caps) VCard Resources:

vcard:type

vcard:type is used in different ways depending on the resource it is applied to:
for resources with binary values, type may indicate the corresponding MIME
subtype. For email, phone and address values, type provides information about
the information such as whether it is preferred, whether it represents a fax or
mobile phone,. etc. See the spec for full details.

vcard:value

vcard:value may be used to indicate the format of the resource data (possible
values include 'uri','text','phoneNumber', etc.) See RFC 2425.

HyperContent v1.4 manual 81

© 2004 Columbia University in the City of New York

ftp://ftp.isi.edu/in-notes/rfc2425.txt

vcard:language

See RFC 2425.

vcard:encoding

See RFC 2425.

vcard:X-parameter

Two properties apply to vcard:X-parameter; vcard:xname indicates the
parameter's name and vcard:text indicates its value.

HyperContent v1.4 manual 82

© 2004 Columbia University in the City of New York

ftp://ftp.isi.edu/in-notes/rfc2425.txt
ftp://ftp.isi.edu/in-notes/rfc2425.txt

XML Includes

XML Includes is a special XML aggregation filter which makes it possible to reference
XML and metadata from multiple files, enabling XSL transformations to automatically
generate links and navigation sections that tie a web site together.

Defining XML Includes

Any number of XML Includes can be defined per form of output of an xml-doc or
xml-doctype in a HyperContent project definition. Each set of includes is configured in
an include tag:
< include >

source =

A path pattern indicating the location of the files to be included. This
may include the path of a file in the repository, a URL, or a pattern
with wildcards; if the wildcard pattern does not begin with a '/', it is
resolved at build time from the directory of the source file being
built. See the chapter on path patterns for more information.

data = (yes | no)

Indicates whether the actual XML content of an included file should
be copied into the output XML. This is useful when you want to
reuse portions of the content, for example displaying the first 300
characters of text. Defaults to "yes", but should be set to "no" if the
data is not needed, to improve build performance. If the file is not an
xml content type, data will not be included.

metadata = (yes | no)

Indicates whether the metadata of the included file should be copied
into the output XML as RDF/XML. This is useful, for example, when
you want to create a link to an included file and use its title in the text
of the link. Defaults to "no".

The result of XML Includes

At build time the include filters are processed first, before any XSL transformation or
other filters that may be specified. The result is one XML document which contains both
the source file and its metadata expressed as RDF/XML, and all of the files in the

HyperContent v1.4 manual Developing Sites: XML Includes 83

© 2004 Columbia University in the City of New York

repository which match one of the configured include source patterns. There are three
special elements declared in the HyperContent namespace which create the structure
around the source and included data and metadata:

xmlns:cms="http://www.ais.columbia.edu/sws/xmlns/cucms#"

< cms:wrapper >

This is the root element of the XML document generated by the XML Includes
filter. It has one cms:source child element representing the XML document
which was passed into the filter, and 0 or more cms:include elements
representing each included file. The cms:source element has two child tags, an
rdf:RDF tag containing the source file metadata in RDF/XML, and the root
element of the source file with all the source XML data beneath it. A
cms:include element may or may not have the rdf:RDF and root element as
children, depending how the include was configured. Both cms:source and
cms:include have the following attributes:

directory =

The directory in which the represented file lives in the repository.

path =

The path of the represented file in the repository.

filename =

The name of the represented file in the repository (the portion of the
path after the directory).

pattern =

The pattern is taken from the path attribute of the xml-doc,
xml-doctype or resource-directory tag used to configure the
represented file's type in the project definition. You can easily query
specific page types in XPath using this attribute.

basename =

The name of this file without an extension. This can be useful for
constructing links to alternate forms of output for the represented file
by appending the appropriate extension.

type =

HyperContent v1.4 manual 84

© 2004 Columbia University in the City of New York

The MIME type of the represented file.

XPath examples for working with included data

To illustrate the value of XML Includes, here are a few example XPath queries that could
be used in XSL transformations to leverage included data.

/cms:wrapper/cms:include[@pattern='/faculty/*']/child::*[not(contains(@name,'RDF'))]

Retrieves the root element of all includes which were defined as faculty pages

/cms:wrapper/cms:include[starts-with(@directory,/cms:wrapper/cms:source/@directory)]

Retrieves all included files in or beneath the same directory as the source file

/cms:wrapper/cms:source/rdf:RDF/fs:File/dc:title

The title of the source document

HyperContent v1.4 manual 85

© 2004 Columbia University in the City of New York

XSL Transformations

XSLT is a language for transforming XML documents into other XML documents; it is
intended to serve as a layer between structured data and presentation, allowing you to
define rules which determine how structured data is rendered into a formatting language
such as (X)HTML or XSL-FO (Formatting Objects, used to generate PDF files). XSLT
uses a query language called XPath to access specific data from XML files. Background
information with links to references for XSLT, XSL-FO and XPath is available at the
W3C XSL site.

Defining XSL transformations

Any form of output of an xml-doc or xml-doctype in a HyperContent project definition
can be configured with a transform tag which sets up an XSL transformation for that
content. The content type of the output may influence the transformation filter; if
"application/pdf" is selected, the XSL filter will automatically engage the Formatting
Objects Processor to turn the XSL-FO output of the XSLT into a PDF.
< transform >

source =

The path in the repository or URL of the XSL file which is used to
perform the transformation.

The transform tag maybe configured with child tags to pass additional information to the
XSLT as parameters:
< with-param >

This tag allows you to pass arbitrary parameters to your XSLT. This can be
used to pass contextual information to the XSLT, enabling context-sensitive
results.
name =

The name of the parameter.

value =

The value of the parameter.

< with-baseurl >

You will usually want to create links in XHTML output to other pages in the
site; the baseurl is determined for each output page at build time as a relative
path prefix to the root of the site output. You can prepend the baseurl to any

HyperContent v1.4 manual Developing Sites: XSL Transformations 86

© 2004 Columbia University in the City of New York

http://www.w3.org/Style/XSL/

full repository path to create a link from the output page to the output of an
other repository file. For example, you might construct a link in the context of
processing an XML Include to the HTML output of that file: < a href =
"{concat($baseurl,@directory,@basename,'.html')}"/>

as =

The name of the parameter expected in the XSLT which should
contain the baseurl value. Defaults to "baseurl".

< with-filedate >

In the case you want to display a last modified time on an output page, you can
use this tag to pass the formatted date string as a parameter to your XSLT.

as =

The name of the parameter expected in the XSLT which should
contain the filedate value. Defaults to "filedate".

Referencing Repository Content within XSLT

XSLT provides three mechanisms for referencing external data; you can set up
inheritance of templates from other XSLT files using an xsl:import or xsl:include
command, and you can pull in data from XML documents besides the one being
processed using the document() function. HyperContent makes it simple to use these
commands to access other files in your project repository; simply use the path of the file
in the repository you want to access, and HyperContent will provide it. You can also
reference content using URLs, and any rules set up in your XML catalog will be followed
in retrieving the content.

HyperContent v1.4 manual 87

© 2004 Columbia University in the City of New York

Filters

HyperContent provides a filtering architecture to allow unlimited possibilities in the
manipulation of XML content. This architecture allows you to implement custom filters
using the IPublicationFilter interface, and declare the filters in the Filters.xml properties
file. Filters can be configured for any form of output of an xml-doc or xml-doctype in a
HyperContent project definition using a filter tag.

< filter >

key =

The key of the filter as configured in Filters.xml.

A filter tag can also have any number of with-param child elements allowing you to pass
arbitrary parameters to the filter via its setParameters() method.

< with-param >

name=

The name of the parameter

value=

The value of the parameter

Built in Filters

HyperContent has two filters built in which allow you to extract data from XML files
with VCard metadata:

vcard_photo

Used to extract the JPEG photo from VCard metadata. Use this filter if you
want to output the image from a VCard as a separate file.

vcard_vcf

Use this filter to output a standard .vcf vcard file, which is compatible with
most major email clients and personal information management software. This
filter recognizes two parameters:

HyperContent v1.4 manual Developing Sites: Filters 88

© 2004 Columbia University in the City of New York

fold = (true | false)

indicates whether the VCard should have long lines folded to the
standard maximum width of 75 characters per line. Defaults to true.

photo = (true | false)

indicates whether the photo should be included as standard base64
encoded binary data. Some, though not all clients will import this
photo with the vcf file, and it will significantly increase the size of
the file.

An additional filter is provided which allows for the resolution of navigation templates at
build time. See the navigation chapter for more information.

HyperContent v1.4 manual 89

© 2004 Columbia University in the City of New York

Non-XML Content

< resource-directory >

HyperContent can be set up to work with any kind of file that has a MIME type
- see thee chapter on Content Types for global configuration information. At
the project level, any kind of file that is not XML can be configured in a
resource-directory tag.

label =

The label of a resource directory should be a short, descriptive text
describing a file which would go here. For example, if you were
specifying a resource-directory for news images, you could label it
"News Image".

path =

The path of a resource-directory describes a possible rather than
literal location. Possibilities are expressed using wildcards: e.g.
'/*/portrait.jpg indicates a jpeg file in a directory beneath the
repository root; '/*/*' indicates a file one level down in the repository.
Wildcards are replaced with actual names by authors at the time they
create a new file matching this pattern. The file extension will be
based on the content type of the file created. For a more complete
explanation and examples, see the chapter on path patterns.

publish = (true | false)

Indicates whether the resources should be published or not. For
example, you would normally want image files to be published, while
you may not find it necessary to publish DTDs.

< content >

A resource directory is configured to accept one or more type of content with
content tags.

type =

The MIME type of an allowed type of file for this directory.

Overriding Default Editors

HyperContent v1.4 manual Developing Sites: Non-XML Content 90

© 2004 Columbia University in the City of New York

../../../preview/docs/manual/develop/mime.html

By default, files will be configured to use the default editors for their MIME type as
configured in the Content Types file. You can override the defaults for files in a resource
directory by adding editor elements inside it. You must specify all the editors that you
want to be used; once you add an editor element, the defaults are ignored. The editors
appear in the order you specify them: thus, the first editor element will be the opening
screen for an author who chooses to edit a file corresponding to this resource-directory.
< editor >

The editor element has a single attribute:
key = (see the chapter on Editors)

HyperContent v1.4 manual 91

© 2004 Columbia University in the City of New York

Editors

HyperContent provides an extensible framework for plugging in web content authoring
tools, which are referred to as editors. Any number of editors can be applied to the same
file, enabling a tailored mix-and-match authoring environment. For example, the Dublin
Core Metadata Editor can be combined with the Image Editor on a JPEG file, with the
XML editor for an XML file, or with the Upload/Download editor for a Microsoft Word
document. Additional custom editors can be implemented using the IEditor interface, or
the older IFileEditorServantFactory interface.

Editor configuration

All editors are configured in the Editors.xml configuration file, which maps an instance
of either editor API to a key which can be used to reference that editor in project
definition files and in the ContentTypes.xml global configuration file.

The global configuration sets up default associations of editors with MIME types; in a
project definition, those defaults can be overridden at the project level, or at the level of
an xml-doc, xml-doctype or resource-directory.

< editor >

Editors are configured with this tag. Multiple editors are configured with
several editor tags, and the document order in which they are listed controls the
order in which they appear on screen.

key =

The key of the desired editor, as mapped in the Editors.xml document

Included Editors

There are nine editors included with HyperContent, all described in the Authoring section
of this manual. Here is a list of each editor, by the key used to refer to it.

xml

DTD-based XML editing with WYSIWYG XHTML enabled for any xml
element with the name 'html'. Only used for xml documents.

dublincore

Supports all 15 of the Dublin Core Metadata terms, which may be applied to

HyperContent v1.4 manual Developing Sites: Editors 92

© 2004 Columbia University in the City of New York

../../../docs/manual/author/index.html

files of any content type.

text

Plain text editing, useful for any type of text file (e.g. DTDs, javascript, CSS)

upload

Allows upload and download of files from the desktop to the server. Useful for
any file type, especially arbitrary binary files.

vcard

Allows VCard contact information to be stored in metadata. Recommended for
use with XML files, which may contain additional data about the person.

buildoptions

Configures build-time options for a file, including ad-hoc XML Includes,
hiding the file, and specifying a replacement for the file (similar to filesystem
linking).

image

Crop and resize photos directly in the browser, with built in support for GIF,
JPEG and PNG with automated conversions.

spellcheck

Spell checker. As shipped, it can check words in XML elements and in Dublin
Core title, description and keywords.

navigation

Drag-and drop reordering of navigation items, plus easy addition of links and
relabeling of items.

HyperContent v1.4 manual 93

© 2004 Columbia University in the City of New York

Ignored Directories

By default, HyperContent will make certain that the publication filesystem mirrors the
build filesystem, which involves copying over new content and deleting unknown files.
In some situations, you may want to have directories under the publication filesystem
root which are not under HyperContent's control, for example to keep a copy of an old
web site available. In order to prevent that content from being deleted, you can add this
element your project definition file to instruct HyperContent to ignore a directory on the
publication filesystem.

< ignore-directory >

path =

The path of the directory on the publication filesystem that should be
left alone. Should begin with a '/', e.g. "/oldsite/".

HyperContent v1.4 manual Developing Sites: Ignored Directories 94

© 2004 Columbia University in the City of New York

../../../docs/manual/develop/project-def.html

Permissions

Permissions in HyperContent provide control over the basics of authorization, such as
controlling read and write access to directories and files. Permissions are associated with
users or groups of users. The frameworks and GUI tools used to manage groups and
permissions are part of the uPortal framework. The uPortal site has some documentation
available to help understand these tools:

• uPortal Groups Service developer's guide
• uPortal permissions design
• uPortal Composite Group service documentation
• uPortal Groups Manager Channel user's guide

This manual also contains a chapter on setting permissions in the Content Manager.

There are seven activities in HyperContent which can be authorized:

• Read: view the target repository path and preview its output
• Write: edit content and save changes
• Create: create new directories and files
• Delete: delete directories and files
• Grant Permissions: grant permissions on directories and files
• Build: build files
• Publish: publish files

Here are some useful things to keep in mind with regard to permissions in HyperContent:

• When you first install HyperContent, or when you create a new project, you have to
configure permissions as a Portal Administrator (super-user), before any regular
users can have access.

• New projects can only be created by users with permission to create files in the
"HyperContent Project Definitions" project.

• Users are only allowed to open a project if they have read permission on the root
directory of that project's repository.

• Permissions apply recursively from directories to their subdirectories, but a DENY
permission on a subdirectory overrides a GRANT permission on its parent. Thus
you can DENY read access to particular directories in order to hide them from some
users.

• Permissions are inherited recursively by the members of a group and its subgroups,
but a permission given to a subgroup overrides a permission on its parent group for
users who are members of the subgroup. Thus you can DENY read access on a
folder to your project group, but GRANT read access to a subgroup of project
administrators.

• While HyperContent does not have formal workflow, you can grant content authors
the ability to BUILD but not PUBLISH their changes, so that they must request
publication from an administrator.

HyperContent v1.4 manual Developing Sites: Permissions 95

© 2004 Columbia University in the City of New York

http://www.uportal.org/implementors/services/developersGuidetoGroups.html
http://www.uportal.org/developers/uPortalAuthorizationSystem2.htm
http://www.uportal.org/implementors/services/compositeGroupService.html
http://www.uportal.org/implementors/groupsmanager.html

Navigation and Site Maps

HyperContent 1.4 introduces a new way of developing site navigation and site maps.
Previously, navigation structures (such as the top and left hand navigation on this page)
would be generated through a combination of XML Includes and XSL logic that sorts
through the includes and decides how to order and label them. If you wanted to
implement custom or ad-hoc ordering, you would have to build a custom data element
into the data of XML files to store a sort key: for binary files, there was no way other
than sorting on filename or title. Mixing links to external sites with automatically
generated in-site navigation required maintenance of separate link files.

These concerns recurred across several of the larger and more complex sites built using
HyperContent, so this new system was built to provide a better way to manage
navigation. It also happens to dramatically reduce HyperContent's memory usage at build
time, as it moves logic and data analysis out of XSL and into Java where it can be
processed much more efficiently. There are three components to the new navigation
system: a navigation templating language, a navigation editor, and a navigation resolution
filter.

Navigation Templates

HyperContent provides a simple XML grammar for navigation templates. This grammar
allows you to create nested navigation structures with custom labeling and sorting rules.

The URL for the navigation templates dtd is

http://hypercontent.sourceforge.net/dtd/navigation.dtd

< nav-template >

A navigation template embodies a rule for producing any number of navigation
items, as well as rules for how its children should be sorted. It may contain any
number of child nav-template elements, and may contain an overrides
element which is used to override default labeling or sorting for instances of the
specified pattern.

pattern =

A pattern describes the location of a navigation item. It may contain
the path of a file in the filesystem, a pattern used to define an
xml-doctype in the project definition, the URL of an external
resource, or can be left blank to indicate a navigation item which is
intended to be just a container or label for other items.

HyperContent v1.4 manual Developing Sites: Navigation and Site Maps 96

© 2004 Columbia University in the City of New York

basedir =

The node in the filesystem from which the pattern should be resolved.
A single forward slash indicates the root of the repository, while a
blank value indicates that the basedir should be inherited. If this is the
root template, the inherited value will be the directory in which the
nav-template file is stored. Otherwise, the inherited value will reflect
the resolved directory of the parent nav-template instance.

sortIndex =

This field can be used to specify an integer reflecting at what position
this template should occur in the resolved list of navigation items
which are its siblings.

labelWith = (title|vcard|filename|date|custom)

This defines how instances of the specified pattern should be labeled:
according to the Dublin core title (metadata), vcard full name
(metadata), filename, date saved, or the custom label specified in the
next attribute.

customLabel

Holds the custom label value used when labelWith=custom.

maxChildren

Specifies the maximum number of navigation items that should be
presented beneath this one when the templates are resolved. Child
items will be sorted before the list is truncated.

sortChildren = (off|by-title|by-label|by-date|by-vcard|by-filename)
childSortOrder = (ascending|descending)

Specifies if and how sorting should be applied to navigation items
which are resolved as children of an instance of this template.

suppress = (true|false)

Primarily used for override templates: indicates that items resolved to
this template should NOT appear in the resolved navigation
document.

target

A value passed through to the resolved navigation document, which
can be used to specify target for generated links.

HyperContent v1.4 manual 97

© 2004 Columbia University in the City of New York

< overrides >

The overrides element may contain any number of nav-template children. Each
of these nav-templates must represent a specific instance of the pattern of the
nav-template which contains the overrides; in this way, a specific instance can
be given a sortIndex of 0 to move to the top, or can have a custom label applied
if, for example, the page title is too long to fit in a navigation area.

Navigation Filter

The navigation filter resolves a set of navigation templates into a navigation items
document. This involves resolving instances of patterns, and processing these instances
according to the templates' sorting and labeling rules. It is best to perform the resolution
of navigation templates into items at build time to guarantee that any content which has
been added, altered or removed since the templates were last updated is reflected
appropriately in the site navigation. This type of filter is specified using the filter tag as a
direct child of an xml-doc or xml-doctype tag; this way, the data is filtered once and can
be included many times, by all the files that share navigation. The navigation filter is
specified with a filter tag with key="navigation". Other files that include a navigation
file that is configured with the filter as described will receive the filtered data with a root
element of navigation, as follows.
< navigation >

The root element of a resolved navigation items document. Contains one or
more nav-item elements.

< nav-item >

Represents one navigation item, and may contain additional nav-item elements.

directory =

The directory which contains this item, if applicable.

location =

The filesystem path or URL of this item, if applicable.

base =

The location of this item minus the file extension and preceding
period. Handy for generating links to HTML output from xml
sources.

pattern =

The pattern of this item in the project definition, if applicable. Useful

HyperContent v1.4 manual 98

© 2004 Columbia University in the City of New York

../../../docs/manual/develop/filters.html

for grouping like items.

label =

The label of this item.

target =

The target as specified in the item's template.

Navigation Editor

The navigation editor presents a user friendly view of a navigation templates document.
What the user sees is actually a hierarchical representation of the filtered result of the
templates. The editor allows the user to drag and drop to re-order items within a list,
quickly add one-off templates (such as links to external sites), change the label and
location of items, and suppress or remove items. These changes are then converted back
into templates, such that the application of the filter will yield output identical to what the
user entered on screen (assuming no other files have been added, altered or removed in
the repository). You can configure the navigation editor to be used with nav-template
files by configuring an editor tag with key="navigation" for the relevant xml-doc or
xml-doctype. It is useful to combine it with the dublincore, xml and upload editors.

HyperContent v1.4 manual 99

© 2004 Columbia University in the City of New York

Optimizations

HyperContent has been aggressively optimized for maximum performance and memory
efficiency. Profiling tools were used extensively in development with a number of test
sites to analyze and alleviate performance bottlenecks. Tested with the largest sites
currently implemented in HyperContent, profiling indicates that the single largest
performance bottleneck is processing XSL transformations. The publication report
screen, described in an earlier chapter, provides metrics information detailing where the
build process is spending its time. The numbers provided there can help you identify
whether any particular transformations are taking a lot of time, so that you can focus your
own optimization efforts where needed, and have some basis for comparing the
performance implications of changes. Here are some tips for optimizing XSL processing
in HyperContent:

• Use xsl keys whenever possible, to reduce the cost of xpath lookups. For example, a
simple key to get a nodelist of all XML Includes conforming to a certain pattern:
< xsl:key name="pattern"
match="/cms:wrapper/cms:include" use="@pattern"/>

• Avoid use of the '//' axis when it is possible to define an XPath more explicitly
• For a single document, an XML Include is generally faster than calling the

document() function.
• When defining XML includes, only include files you need, and only include data or

metadata if you need it.
• When you need to selectively acquire the data from XML Includes based on some

metadata property, it may be more efficient to include only the metadata and get the
data with the document() function if you anticipate needing only a handful out of
many.

HyperContent v1.4 manual Developing Sites: Optimizations 100

© 2004 Columbia University in the City of New York

http://www.jenitennison.com/xslt/keys.html

Glossary

HyperContent

"Columbia University Content Management Suite" - the name for the software
package built at Columbia for the development and maintenance of web sites.

WYSIWYG

"What you see is what you get"

XML

eXtensible Markup Language

HyperContent terminology

build

Build is a command that a qualified user can issue through the
Content Manager channel in the context of a particular node in the
repository of a given project; all the directories and files beneath that
node will be processed according to their output rules as defined in
the project definition, which may involve processing includes, XSL
transformations, or other data filtering. There may be 0, 1 or many
files output per repository file, depending on the configuration. The
output files are stored to the build filesystem, as configured in the
project definition.

The build command issues a request to the request engine, and opens
a request report in a separate window.

preview

publish

report

XSL related terms

HyperContent v1.4 manual 101

© 2004 Columbia University in the City of New York

hypercontent:/hc-legacy/tag.cc509a735b151211.render.userLayoutRootNode.target.n95.uP#report

FOP

"Formatting Objects Processor" - an engine that processes a
particular extension of XSL call "Formatting Objects", commonly
used to create PDF output from an XML source. HyperContent uses
an FOP provided by the Apache Foundation.

XSL

"eXtensible Stylesheet Language" - a templating language used to
transform XML from one form into another; you can use XSL in
HyperContent to create custom XML output, HTML output, PDF
output or plain text, all from the same XML source.

template

A template is a unit of logic in an XSL Stylesheet used to process a
single type of XML Element, or to perform a certain named
formatting task.

HyperContent v1.4 manual 102

© 2004 Columbia University in the City of New York

Bibliography

Miloslav Nic. XSLT Reference. ZVON.

RFCs

F. Dawson, Lotus Development Corporation; T. Howes, Netscape
Communications. RFC 2426; VCard MIME Directory Profile. The Internet
Society. September 1998

HyperContent v1.4 manual 103

© 2004 Columbia University in the City of New York

http://www.zvon.org/xxl/XSLTreference/Output/
http://www.faqs.org/rfcs/rfc2426.html

